1
0
mirror of https://github.com/oceanprotocol/docs.git synced 2024-11-26 19:49:26 +01:00
docs/content/concepts/did-ddo.md
mariacarmina ef87473b3b
fix typos (#823)
Fix some typos for `address` key.
2021-11-16 21:07:47 +00:00

34 KiB

title description slug section
DID & DDO Specification of decentralized identifiers for assets in Ocean Protocol using the DID & DDO standards. /concepts/did-ddo/ concepts

v4.0.0

Overview

This document describes how Ocean assets follow the DID/DDO specification, such that Ocean assets can inherit DID/DDO benefits and enhance interoperability. DIDs and DDOs follow the specification defined by the World Wide Web Consortium (W3C).

Decentralized identifiers (DIDs) are a type of identifier that enable verifiable, decentralized digital identity. Each DID is associated with a unique entity and DIDs may represent humans, objects, and more.

A DID Document (DDO) is a JSON blob that holds information about the DID. Given a DID, a resolver will return the DDO of that DID.

Rules for DIDs & DDOs

An asset in Ocean represents a downloadable file, compute service, or similar. Each asset is a resource under control of a publisher. The Ocean network itself does not store the actual resource (e.g. files).

An asset has a DID and DDO. The DDO should include metadata about the asset, and define access in at least one service. The DDO can only be modified by owners or delegated users.

All DDOs are stored on-chain in encrypted form to be fully GDPR-compatible. A metadata cache like Aquarius can help in reading, decrypting, and searching through encrypted DDO data from the chain. Because the file URLs are encrypted on top of the full DDO encryption, returning unencrypted DDOs e.g. via an API is safe to do as the file URLs will still stay encrypted.

Publishing & Retrieving DDOs

The DDO is stored on-chain as part of the NFT contract, and stored encrypted using the private key of the Provider. To resolve it, a metadata cache like Aquarius must query the provider to decrypt the DDO.

Here is the complete flow:

DDO flow

UML source
title DDO flow

User(Ocean library) -> User(Ocean library): Prepare DDO
User(Ocean library) -> Provider: encrypt DDO
Provider -> User(Ocean library): encryptedDDO
User(Ocean library) -> ERC721 contract: publish encryptedDDO
Aquarius <-> ERC721 contract: monitors ERC721 contract and gets MetdadataCreated Event (contains encryptedDDO)
Aquarius -> ERC721 contract: calls getMetaData()
Aquarius -> Provider: decrypt encryptedDDO, signed request using Aquarius's private key
Provider -> ERC721 contract: checks state using getMetaData()
Provider -> Provider: depending on metadataState (expired,retired) and aquarius address, validates the request
Provider -> Aquarius: DDO
Aquarius -> Aquarius : validate DDO
Aquarius -> Aquarius : cache DDO
Aquarius -> Aquarius : enhance cached DDO in response with additional infos like events & stats

DID

In Ocean, a DID is a string that looks like this:

did:op:0ebed8226ada17fde24b6bf2b95d27f8f05fcce09139ff5cec31f6d81a7cd2ea

The part after did:op: is the checksum of the ERC721 contract address and the chain the asset has been published to:

const checksum = sha256(ERC721 contract address + chainId)
console.log(checksum)
// 0ebed8226ada17fde24b6bf2b95d27f8f05fcce09139ff5cec31f6d81a7cd2ea

It follows the generic DID scheme.

DDO

A DDO in Ocean has these required attributes:

Attribute Type Description
@context Array of string Contexts used for validation.
id string Computed as sha256(address of ERC721 contract + chainId).
version string Version information in SemVer notation referring to this DDO spec version, like 4.0.0.
chainId number Stores chainId of the network the DDO was published to.
metadata Metadata Stores an object describing the asset.
services Services Stores an array of services defining access to the asset.
credentials Credentials Describes the credentials needed to access a dataset in addition to the services definition.

Metadata

This object holds information describing the actual asset.

Attribute Type Required Description
created ISO date/time string Contains the date of the creation of the dataset content in ISO 8601 format preferably with timezone designators, e.g. 2000-10-31T01:30:00Z.
updated ISO date/time string Contains the date of last update of the dataset content in ISO 8601 format preferably with timezone designators, e.g. 2000-10-31T01:30:00Z.
description string Details of what the resource is. For a dataset, this attribute explains what the data represents and what it can be used for.
copyrightHolder string The party holding the legal copyright. Empty by default.
name string Descriptive name or title of the asset.
type string Asset type. Includes "dataset" (e.g. csv file), "algorithm" (e.g. Python script). Each type needs a different subset of metadata attributes.
author string Name of the entity generating this data (e.g. Tfl, Disney Corp, etc.).
license string Short name referencing the license of the asset (e.g. Public Domain, CC-0, CC-BY, No License Specified, etc. ). If it's not specified, the following value will be added: "No License Specified".
links Array of string Mapping of URL strings for data samples, or links to find out more information. Links may be to either a URL or another asset.
contentLanguage string The language of the content. Use one of the language codes from the IETF BCP 47 standard
tags Array of string Array of keywords or tags used to describe this content. Empty by default.
categories Array of string Array of categories associated to the asset. Note: recommended to use tags instead of this.
additionalInformation Object Stores additional information, this is customizable by publisher
algorithm Algorithm Metadata (for algorithm assets only) Information about asset of type algorithm

Example:

{
  "metadata": {
    "created": "2020-11-15T12:27:48Z",
    "updated": "2021-05-17T21:58:02Z",
    "description": "Sample description",
    "name": "Sample asset",
    "type": "dataset",
    "author": "OPF",
    "license": "https://market.oceanprotocol.com/terms"
  }
}

Algorithm Metadata

An asset of type algorithm has additional attributes under metadata.algorithm, describing the algorithm and the Docker environment it is supposed to be run under.

Attribute Type Required Description
language string Language used to implement the software.
version string Version of the software preferably in SemVer notation. E.g. 1.0.0.
container container Object describing the Docker container image. See below

The container object has the following attributes defining the Docker image for running the algorithm:

Attribute Type Required Description
entrypoint string The command to execute, or script to run inside the Docker image.
image string Name of the Docker image.
tag string Tag of the Docker image.
checksum string Checksum of the Docker image.
{
  "metadata": {
    "created": "2020-11-15T12:27:48Z",
    "updated": "2021-05-17T21:58:02Z",
    "description": "Sample description",
    "name": "Sample algorithm asset",
    "type": "algorithm",
    "author": "OPF",
    "license": "https://market.oceanprotocol.com/terms",
    "algorithm": {
      "language": "Node.js",
      "version": "1.0.0",
      "container": {
        "entrypoint": "node $ALGO",
        "image": "ubuntu",
        "tag": "latest",
        "checksum": "44e10daa6637893f4276bb8d7301eb35306ece50f61ca34dcab550"
      }
    }
  }
}

Services

Services define the access for an asset, and each service is represented by its respective datatoken.

An asset should have at least one service to be actually accessible, and can have as many services which make sense for a specific use case.

Attribute Type Required Description
id string Unique ID
type string Type of service (access, compute, wss, etc.
name string Service friendly name
description string Service description
datatokenAddress string Datatoken address
serviceEndpoint string Provider URL (schema + host)
files Files Encrypted file URLs.
timeout number Describing how long the service can be used after consumption is initiated. A timeout of 0 represents no time limit. Expressed in seconds.
compute Compute (for compute assets only) If service is of type compute, holds information about the compute-related privacy settings & resources.

Files

The files field is returned as a string which holds the encrypted file URLs.

Example:

{
  "files": "0x044736da6dae39889ff570c34540f24e5e084f4e5bd81eff3691b729c2dd1465ae8292fc721e9d4b1f10f56ce12036c9d149a4dab454b0795bd3ef8b7722c6001e0becdad5caeb2005859642284ef6a546c7ed76f8b350480691f0f6c6dfdda6c1e4d50ee90e83ce3cb3ca0a1a5a2544e10daa6637893f4276bb8d7301eb35306ece50f61ca34dcab550b48181ec81673953d4eaa4b5f19a45c0e9db4cd9729696f16dd05e0edb460623c843a263291ebe757c1eb3435bb529cc19023e0f49db66ef781ca692655992ea2ca7351ac2882bf340c9d9cb523b0cbcd483731dc03f6251597856afa9a68a1e0da698cfc8e81824a69d92b108023666ee35de4a229ad7e1cfa9be9946db2d909735"
}

During the publish process, file URLs must be encrypted with a respective Provider API call before storing the DDO on-chain. For this an array of strings with one or multiple URLs is what gets encrypted and send to Provider:

["https://url.com/file1.csv", "https://url.com/file2.csv"]

To get information about the files after encryption, the /fileinfo endpoint of Provider returns based on a passed DID an array of file metadata:

[
  {
    "contentLength": 100,
    "contentType": "application/json"
  },
  {
    "contentLength": 130,
    "contentType": "application/text"
  }
]

This only concerns metadata about a file, but never the file URLs. The only way to decrypt them is to exchange at least 1 datatoken based on the respective service pricing scheme.

Compute Options

An asset with a service of type compute has the following additional attributes under the compute object. This object is required if the asset is of type compute, but can be omitted for type of access.

Attribute Type Required Description
namespace string Namespace used for the compute job. Defaults to 'ocean-compute'.
cpus number Maximum number of CPUs allocated for a job.
gpus number Maximum number of GPUs allocated for a job.
gpuType string Type of GPU (if any).
memory string Maximum amount of memory allocated for a job. You can express memory as a plain integer or as a fixed-point number using one of these suffixes: E, P, T, G, M, k. You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. For example, the following represent roughly the same value: 128974848, 129e6, 129M, 123Mi.
volumeSize string Amount of disk space allocated. You can express it as a plain integer or as a fixed-point number using one of these suffixes: E, P, T, G, M, k. You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.
allowRawAlgorithm boolean If true, any passed raw text will be allowed to run. Useful for an algorithm drag & drop use case, but increases risk of data escape through malicious user input. Should be false by default in all implementations.
allowNetworkAccess boolean If true, the algorithm job will have network access.
publisherTrustedAlgorithmPublishers Array of string If empty, then any published algorithm is allowed. Otherwise, only published algorithms by some publishers are allowed.
publisherTrustedAlgorithms Array of publisherTrustedAlgorithms If empty, then any published algorithm is allowed. (see below).

The publisherTrustedAlgorithms is an array of objects with the following structure:

Attribute Type Required Description
did string The DID of the algorithm which is trusted by the publisher.
filesChecksum string Hash of algorithm's files section (as string).
containerSectionChecksum string Hash of algorithm's metadata.algorithm.container section (as string).

To produce filesChecksum:

sha256(JSON.Stringify(algorithm_ddo.services[0].files))

To produce containerSectionChecksum:

sha256(JSON.Stringify(algorithm_ddo.metadata.algorithm.container))

Example:

{
  "services": [
    {
      "type": "access",
      "files": "0x044736da6dae39889ff570c34540f24e5e084f...",
      "name": "Download service",
      "description": "Download service",
      "datatokenAddress": "0x123",
      "serviceEndpoint": "https://myprovider.com",
      "timeout": 0
    },
    {
      "type": "compute",
      "files": "0x6dd05e0edb460623c843a263291ebe757c1eb3...",
      "name": "Compute service",
      "description": "Compute service",
      "datatokenAddress": "0x124",
      "serviceEndpoint": "https://myprovider.com",
      "timeout": 0,
      "compute": {
        "namespace": "ocean-compute",
        "cpus": 2,
        "gpus": 4,
        "gpuType": "NVIDIA Tesla V100 GPU",
        "memory": "128M",
        "volumeSize": "2G",
        "allowRawAlgorithm": false,
        "allowNetworkAccess": true,
        "publisherTrustedAlgorithmPublishers": ["0x234", "0x235"],
        "publisherTrustedAlgorithms": [
          {
            "did": "did:op:123",
            "filesChecksum": "100",
            "containerSectionChecksum": "200"
          },
          {
            "did": "did:op:124",
            "filesChecksum": "110",
            "containerSectionChecksum": "210"
          }
        ]
      }
    }
  ]
}

Credentials

By default, a consumer can access a resource if they have 1 datatoken. Credentials allow the publisher to optionally specify more fine-grained permissions.

Consider a medical data use case, where only a credentialed EU researcher can legally access a given dataset. Ocean supports this as follows: a consumer can only access the resource if they have 1 datatoken and one of the specified "allow" credentials.

This is like going to an R-rated movie, where you can only get in if you show both your movie ticket (datatoken) and some identification showing you're old enough (credential).

Only credentials that can be proven are supported. This includes Ethereum public addresses, and in the future W3C Verifiable Credentials and more.

Ocean also supports "deny" credentials: if a consumer has any of these credentials, they can not access the resource.

Here's an example object with both "allow" and "deny" entries:

{
  "credentials": {
    "allow": [
      {
        "type": "address",
        "values": ["0x123", "0x456"]
      }
    ],
    "deny": [
      {
        "type": "address",
        "values": ["0x2222", "0x333"]
      }
    ]
  }
}

DDO Checksum

In order to ensure the integrity of the DDO, a checksum is computed for each DDO:

const checksum = sha256(JSON.stringify(ddo))

The checksum hash is used when publishing/updating metadata using the setMetaData function in the ERC721 contract, and is stored in the event generated by the ERC721 contract:

event MetadataCreated(
  address indexed createdBy,
  uint8 state,
  string decryptorUrl,
  bytes flags,
  bytes data,
  bytes metaDataHash,
  uint256 timestamp,
  uint256 blockNumber
);

event MetadataUpdated(
  address indexed updatedBy,
  uint8 state,
  string decryptorUrl,
  bytes flags,
  bytes data,
  bytes metaDataHash,
  uint256 timestamp,
  uint256 blockNumber
);

Aquarius should always verify the checksum after data is decrypted via a Provider API call.

State

Each asset has a state, which is held by the NFT contract. The possible states are:

State Description
0 Active.
1 End-of-life.
2 Deprecated (by another asset).
3 Revoked by publisher.
4 Ordering is temporary disabled.

Aquarius Enhanced DDO Response

The following fields are added by Aquarius in its DDO response for convenience reasons, where an asset returned by Aquarius inherits the DDO fields stored on-chain.

These additional fields are never stored on-chain, and are never taken into consideration when hashing the DDO.

NFT

The nft object contains information about the ERC721 NFT contract which represents the intellectual property of the publisher.

Attribute Type Description
address string Contract address of the deployed ERC721 NFT contract.
name string Name of NFT set in contract.
symbol string Symbol of NFT set in contract.
owner string ETH account address of the NFT owner.
state number State of the asset reflecting the NFT contract value. See State
created ISO date/time string Contains the date of NFT creation.

Example:

{
  "nft": {
    "address": "0x000000",
    "name": "Ocean Protocol Asset v4",
    "symbol": "OCEAN-A-v4",
    "owner": "0x0000000",
    "state": 0,
    "created": "2000-10-31T01:30:00Z"
  }
}

Datatokens

The datatokens array contains information about the ERC20 datatokens attached to asset services.

Attribute Type Description
address string Contract address of the deployed ERC20 contract.
name string Name of NFT set in contract.
symbol string Symbol of NFT set in contract.
serviceId string ID of the service the datatoken is attached to.

Example:

{
  "datatokens": [
    {
      "address": "0x000000",
      "name": "Datatoken 1",
      "symbol": "DT-1",
      "serviceId": "1"
    },
    {
      "address": "0x000001",
      "name": "Datatoken 2",
      "symbol": "DT-2",
      "serviceId": "2"
    }
  ]
}

Event

The event section contains information about the last transaction that created or updated the DDO.

Example:

{
  "event": {
    "tx": "0x8d127de58509be5dfac600792ad24cc9164921571d168bff2f123c7f1cb4b11c",
    "block": 12831214,
    "from": "0xAcca11dbeD4F863Bb3bC2336D3CE5BAC52aa1f83",
    "contract": "0x1a4b70d8c9DcA47cD6D0Fb3c52BB8634CA1C0Fdf",
    "datetime": "2000-10-31T01:30:00"
  }
}

Statistics

The stats section contains different statistics fields.

Attribute Type Description
consumes number How often an asset was consumed, meaning how often it was either downloaded or used as part of a compute job.
isInPurgatory string If asset is listed in purgatory and reason

Example:

{
  "stats": {
    "consumes": 4,
    "isInPurgatory": "false"
  }
}

Full Enhanced DDO Example

{
  "@context": ["https://w3id.org/did/v1"],
  "id": "did:op:ACce67694eD2848dd683c651Dab7Af823b7dd123",
  "version": "4.0.0",
  "chainId": 1,
  "metadata": {
    "created": "2020-11-15T12:27:48Z",
    "updated": "2021-05-17T21:58:02Z",
    "description": "Sample description",
    "name": "Sample asset",
    "type": "dataset",
    "author": "OPF",
    "license": "https://market.oceanprotocol.com/terms"
  },
  "services": [
    {
      "type": "access",
      "files": "0x044736da6dae39889ff570c34540f24e5e084f4e5bd81eff3691b729c2dd1465ae8292fc721e9d4b1f10f56ce12036c9d149a4dab454b0795bd3ef8b7722c6001e0becdad5caeb2005859642284ef6a546c7ed76f8b350480691f0f6c6dfdda6c1e4d50ee90e83ce3cb3ca0a1a5a2544e10daa6637893f4276bb8d7301eb35306ece50f61ca34dcab550b48181ec81673953d4eaa4b5f19a45c0e9db4cd9729696f16dd05e0edb460623c843a263291ebe757c1eb3435bb529cc19023e0f49db66ef781ca692655992ea2ca7351ac2882bf340c9d9cb523b0cbcd483731dc03f6251597856afa9a68a1e0da698cfc8e81824a69d92b108023666ee35de4a229ad7e1cfa9be9946db2d909735",
      "name": "Download service",
      "description": "Download service",
      "datatokenAddress": "0x123",
      "serviceEndpoint": "https://myprovider.com",
      "timeout": 0
    },
    {
      "type": "compute",
      "files": "0x044736da6dae39889ff570c34540f24e5e084f4e5bd81eff3691b729c2dd1465ae8292fc721e9d4b1f10f56ce12036c9d149a4dab454b0795bd3ef8b7722c6001e0becdad5caeb2005859642284ef6a546c7ed76f8b350480691f0f6c6dfdda6c1e4d50ee90e83ce3cb3ca0a1a5a2544e10daa6637893f4276bb8d7301eb35306ece50f61ca34dcab550b48181ec81673953d4eaa4b5f19a45c0e9db4cd9729696f16dd05e0edb460623c843a263291ebe757c1eb3435bb529cc19023e0f49db66ef781ca692655992ea2ca7351ac2882bf340c9d9cb523b0cbcd483731dc03f6251597856afa9a68a1e0da698cfc8e81824a69d92b108023666ee35de4a229ad7e1cfa9be9946db2d909735",
      "name": "Compute service",
      "description": "Compute service",
      "datatokenAddress": "0x124",
      "serviceEndpoint": "https://myprovider.com",
      "timeout": 3600,
      "compute": {
        "namespace": "ocean-compute",
        "cpus": 2,
        "gpus": 4,
        "gpuType": "NVIDIA Tesla V100 GPU",
        "memory": "128M",
        "volumeSize": "2G",
        "allowRawAlgorithm": false,
        "allowNetworkAccess": true,
        "publisherTrustedAlgorithmPublishers": ["0x234", "0x235"],
        "publisherTrustedAlgorithms": [
          {
            "did": "did:op:123",
            "filesChecksum": "100",
            "containerSectionChecksum": "200"
          },
          {
            "did": "did:op:124",
            "filesChecksum": "110",
            "containerSectionChecksum": "210"
          }
        ]
      }
    }
  ],
  "credentials": {
    "allow": [
      {
        "type": "address",
        "values": ["0x123", "0x456"]
      }
    ],
    "deny": [
      {
        "type": "address",
        "values": ["0x2222", "0x333"]
      }
    ]
  },

  // Enhanced Aquarius response begins here
  "nft": {
    "address": "0x000000",
    "name": "Ocean Protocol Asset v4",
    "symbol": "OCEAN-A-v4",
    "owner": "0x0000000",
    "state": 0,
    "created": "2000-10-31T01:30:00"
  },

  "datatokens": [
    {
      "address": "0x000000",
      "name": "Datatoken 1",
      "symbol": "DT-1",
      "serviceId": "1"
    },
    {
      "address": "0x000001",
      "name": "Datatoken 2",
      "symbol": "DT-2",
      "serviceId": "2"
    }
  ],

  "event": {
    "tx": "0x8d127de58509be5dfac600792ad24cc9164921571d168bff2f123c7f1cb4b11c",
    "block": 12831214,
    "from": "0xAcca11dbeD4F863Bb3bC2336D3CE5BAC52aa1f83",
    "contract": "0x1a4b70d8c9DcA47cD6D0Fb3c52BB8634CA1C0Fdf",
    "datetime": "2000-10-31T01:30:00"
  },

  "stats": {
    "consumes": 4,
    "isInPurgatory": "false"
  }
}