2023-05-17 16:23:25 +02:00
---
description: >-
How to construct the beginnings of an awesome algorithm for C2D compute jobs
2023-05-23 17:36:59 +02:00
on datasets
2023-05-17 16:23:25 +02:00
---
# Make a Boss C2D Algorithm
2023-06-26 15:47:28 +02:00
< figure > < img src = "../../.gitbook/assets/gif/like-a-boss.gif" alt = "" > < figcaption > < / figcaption > < / figure >
2023-05-17 16:37:46 +02:00
2023-05-22 18:31:32 +02:00
The beginning of any great algorithm for Compute-to-Data starts by referencing the dataset asset correctly on the Docker container. Read on, anon.
2023-05-17 16:30:38 +02:00
2023-05-17 17:14:33 +02:00
### Open the local dataset file
2023-05-17 16:30:38 +02:00
2023-05-24 13:29:00 +02:00
This code goes at the top of your algorithm file for your algorithm NFT asset to use with Compute-to-Data. It references your data NFT asset file on the Docker container you selected.
2023-05-22 18:08:02 +02:00
2023-05-17 17:14:33 +02:00
{% tabs %}
{% tab title="Python" %}
2023-05-22 17:42:16 +02:00
```python
2023-05-17 16:30:38 +02:00
import csv
import json
import os
def get_input(local=False):
dids = os.getenv("DIDS", None)
if not dids:
print("No DIDs found in the environment. Aborting.")
return
dids = json.loads(dids)
for did in dids:
filename = f"data/inputs/{did}/0" # 0 for metadata service
print(f"Reading asset file {filename}.")
return filename
# Get the input filename using the get_input function
input_filename = get_input()
if not input_filename:
# No input filename returned
exit()
2023-05-17 16:51:18 +02:00
# Open the file & run your code
2023-05-17 16:30:38 +02:00
with open(input_filename, 'r') as file:
# Read the CSV file
csv_reader = csv.DictReader(file)
2023-05-17 16:37:46 +02:00
2023-05-17 16:50:45 +02:00
< YOUR CODE GOES HERE >
2023-05-17 16:30:38 +02:00
```
2023-05-17 17:14:33 +02:00
{% endtab %}
2023-05-17 16:30:38 +02:00
2023-05-17 17:14:33 +02:00
{% tab title="Javascript" %}
2023-05-22 17:42:16 +02:00
```javascript
2023-05-17 16:50:18 +02:00
const fs = require("fs");
var input_folder = "/data/inputs";
var output_folder = "/data/outputs";
async function processfolder(Path) {
var files = fs.readdirSync(Path);
for (var i =0; i < files.length ; i + + ) {
var file = files[i];
var fullpath = Path + "/" + file;
if (fs.statSync(fullpath).isDirectory()) {
await processfolder(fullpath);
} else {
< YOUR CODE GOES HERE >
}
}
}
2023-05-17 16:58:14 +02:00
< YOUR CODE & FUNCTION DEFINITIONS GO HERE >
2023-05-17 16:50:18 +02:00
2023-05-17 16:51:18 +02:00
// Open the file & run your code
2023-05-17 16:50:18 +02:00
processfolder(input_folder);
```
2023-05-17 17:14:33 +02:00
{% endtab %}
{% endtabs %}
**Note:** Here are the following Python libraries that you can use in your code:
2023-05-22 17:42:16 +02:00
```python
2023-05-17 17:14:33 +02:00
// Python modules
numpy==1.16.3
pandas==0.24.2
python-dateutil==2.8.0
pytz==2019.1
six==1.12.0
sklearn
xlrd == 1.2.0
openpyxl >= 3.0.3
wheel
matplotlib
```