mirror of
https://github.com/tornadocash/websnark.git
synced 2024-11-30 16:18:16 +01:00
241 lines
5.3 KiB
JavaScript
241 lines
5.3 KiB
JavaScript
|
const {unstringifyBigInts} = require("./stringifybigint.js");
|
||
|
const fs = require("fs");
|
||
|
const bigInt = require("big-integer");
|
||
|
const assert = require("assert");
|
||
|
|
||
|
const version = require("../package").version;
|
||
|
|
||
|
const argv = require("yargs")
|
||
|
.version(version)
|
||
|
.usage(`node buildpkey.js -i "proving_key.json" -o "proving_key.bin"
|
||
|
Default: circuit.json
|
||
|
`)
|
||
|
.alias("i", "input")
|
||
|
.alias("o", "output")
|
||
|
.help("h")
|
||
|
.alias("h", "help")
|
||
|
.epilogue(`Copyright (C) 2018 0kims association
|
||
|
This program comes with ABSOLUTELY NO WARRANTY;
|
||
|
This is free software, and you are welcome to redistribute it
|
||
|
under certain conditions; see the COPYING file in the official
|
||
|
repo directory at https://github.com/iden3/circom `)
|
||
|
.argv;
|
||
|
|
||
|
const inputName = (argv.input) ? argv.input : "proving_key.json";
|
||
|
const outputName = (argv.output) ? argv.output : "proving_key.bin";
|
||
|
|
||
|
|
||
|
const provingKey = unstringifyBigInts(JSON.parse(fs.readFileSync(inputName, "utf8")));
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
function writeUint32(h, val) {
|
||
|
h.dataView.setUint32(h.offset, val, true);
|
||
|
h.offset += 4;
|
||
|
}
|
||
|
|
||
|
function writeUint32ToPointer(h, p, val) {
|
||
|
h.dataView.setUint32(p, val, true);
|
||
|
}
|
||
|
|
||
|
|
||
|
function alloc(h, n) {
|
||
|
const o = h.offset;
|
||
|
h.offset += n;
|
||
|
return o;
|
||
|
}
|
||
|
|
||
|
function writeBigInt(h, bi) {
|
||
|
for (let i=0; i<8; i++) {
|
||
|
const v = bi.shiftRight(i*32).and(0xFFFFFFFF).toJSNumber();
|
||
|
writeUint32(h, v);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function toMontgomeryQ(p) {
|
||
|
const q = bigInt("21888242871839275222246405745257275088696311157297823662689037894645226208583");
|
||
|
return p.times(bigInt.one.shiftLeft(256)).mod(q);
|
||
|
}
|
||
|
|
||
|
function toMontgomeryR(p) {
|
||
|
const r = bigInt("21888242871839275222246405745257275088548364400416034343698204186575808495617");
|
||
|
return p.times(bigInt.one.shiftLeft(256)).mod(r);
|
||
|
}
|
||
|
|
||
|
function writePoint(h, p) {
|
||
|
writeBigInt(h, toMontgomeryQ(p[0]));
|
||
|
writeBigInt(h, toMontgomeryQ(p[1]));
|
||
|
}
|
||
|
|
||
|
function writePoint2(h, p) {
|
||
|
writeBigInt(h, toMontgomeryQ(p[0][0]));
|
||
|
writeBigInt(h, toMontgomeryQ(p[0][1]));
|
||
|
writeBigInt(h, toMontgomeryQ(p[1][0]));
|
||
|
writeBigInt(h, toMontgomeryQ(p[1][1]));
|
||
|
}
|
||
|
|
||
|
function writeTransformedPolynomial(h, p) {
|
||
|
|
||
|
const keys = Object.keys(p);
|
||
|
|
||
|
writeUint32(h, keys.length);
|
||
|
|
||
|
for (let i=0; i<keys.length; i++) {
|
||
|
writeUint32(h, keys[i]);
|
||
|
writeBigInt(h, toMontgomeryR(p[keys[i]]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function calculateBuffLen(provingKey) {
|
||
|
function polSize(pol) {
|
||
|
const l= Object.keys(pol).length;
|
||
|
return 36*l + 4;
|
||
|
}
|
||
|
|
||
|
let size = 40;
|
||
|
|
||
|
// alfa1, beta1, delta1
|
||
|
size += 3 * (32*2);
|
||
|
|
||
|
// beta2, delta2
|
||
|
size += 2 * (32*4);
|
||
|
|
||
|
for (let i=0; i<provingKey.nVars; i++) {
|
||
|
size += polSize(provingKey.polsA[i]);
|
||
|
size += polSize(provingKey.polsB[i]);
|
||
|
}
|
||
|
|
||
|
size += provingKey.nVars* (32*2);
|
||
|
size += provingKey.nVars* (32*2);
|
||
|
size += provingKey.nVars* (32*4);
|
||
|
size += (provingKey.nVars - provingKey.nPublic - 1)* (32*2);
|
||
|
size += provingKey.domainSize * (32*2);
|
||
|
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
|
||
|
const buffLen = calculateBuffLen(provingKey);
|
||
|
|
||
|
const buff = new ArrayBuffer(buffLen);
|
||
|
|
||
|
const h = {
|
||
|
dataView: new DataView(buff),
|
||
|
offset: 0
|
||
|
};
|
||
|
|
||
|
|
||
|
writeUint32(h, provingKey.nVars);
|
||
|
writeUint32(h, provingKey.nPublic);
|
||
|
writeUint32(h, provingKey.domainSize);
|
||
|
const pPolsA = alloc(h, 4);
|
||
|
const pPolsB = alloc(h, 4);
|
||
|
const pPointsA = alloc(h, 4);
|
||
|
const pPointsB1 = alloc(h, 4);
|
||
|
const pPointsB2 = alloc(h, 4);
|
||
|
const pPointsC = alloc(h, 4);
|
||
|
const pPointsHExps = alloc(h, 4);
|
||
|
|
||
|
writePoint(h, provingKey.vk_alfa_1);
|
||
|
writePoint(h, provingKey.vk_beta_1);
|
||
|
writePoint(h, provingKey.vk_delta_1);
|
||
|
writePoint2(h, provingKey.vk_beta_2);
|
||
|
writePoint2(h, provingKey.vk_delta_2);
|
||
|
|
||
|
writeUint32ToPointer(h, pPolsA, h.offset);
|
||
|
for (let i=0; i<provingKey.nVars; i++) {
|
||
|
writeTransformedPolynomial(h, provingKey.polsA[i]);
|
||
|
}
|
||
|
|
||
|
writeUint32ToPointer(h, pPolsB, h.offset);
|
||
|
for (let i=0; i<provingKey.nVars; i++) {
|
||
|
writeTransformedPolynomial(h, provingKey.polsB[i]);
|
||
|
}
|
||
|
|
||
|
writeUint32ToPointer(h, pPointsA, h.offset);
|
||
|
for (let i=0; i<provingKey.nVars; i++) {
|
||
|
writePoint(h, provingKey.A[i]);
|
||
|
}
|
||
|
|
||
|
writeUint32ToPointer(h, pPointsB1, h.offset);
|
||
|
for (let i=0; i<provingKey.nVars; i++) {
|
||
|
writePoint(h, provingKey.B1[i]);
|
||
|
}
|
||
|
|
||
|
writeUint32ToPointer(h, pPointsB2, h.offset);
|
||
|
for (let i=0; i<provingKey.nVars; i++) {
|
||
|
writePoint2(h, provingKey.B2[i]);
|
||
|
}
|
||
|
|
||
|
writeUint32ToPointer(h, pPointsC, h.offset);
|
||
|
for (let i=provingKey.nPublic+1; i<provingKey.nVars; i++) {
|
||
|
writePoint(h, provingKey.C[i]);
|
||
|
}
|
||
|
|
||
|
writeUint32ToPointer(h, pPointsHExps, h.offset);
|
||
|
for (let i=0; i<provingKey.domainSize; i++) {
|
||
|
writePoint(h, provingKey.hExps[i]);
|
||
|
}
|
||
|
|
||
|
assert.equal(h.offset, buffLen);
|
||
|
|
||
|
var wstream = fs.createWriteStream(outputName);
|
||
|
wstream.write(Buffer.from(buff));
|
||
|
wstream.end();
|
||
|
|
||
|
/*
|
||
|
NSignals
|
||
|
NPublic
|
||
|
DomainSize (2 multiple)
|
||
|
pPolsA
|
||
|
pPolsB
|
||
|
pPointsA
|
||
|
pPointsB1
|
||
|
pPointsB2
|
||
|
pPointsC
|
||
|
pPointsHExps
|
||
|
Alfa1
|
||
|
Beta1
|
||
|
Delta1
|
||
|
Beta2
|
||
|
Delta2
|
||
|
PolinomialA_0
|
||
|
PolinomialA_1
|
||
|
PolinomialA_2
|
||
|
...
|
||
|
PolinomialA_NVars-1
|
||
|
|
||
|
PolinomialB_0
|
||
|
PolinomialB_1
|
||
|
PolinomialB_2
|
||
|
...
|
||
|
PolinomialB_NVars-1
|
||
|
|
||
|
PointA_0
|
||
|
PointA_1
|
||
|
...
|
||
|
PointA_NVars-1
|
||
|
|
||
|
PointB1_0
|
||
|
PointB1_1
|
||
|
...
|
||
|
PointB1_NVars-1
|
||
|
|
||
|
PointB2_0
|
||
|
PointB2_1
|
||
|
...
|
||
|
PointB2_NVars-1
|
||
|
|
||
|
PointC_nPublics+1
|
||
|
PointC_nPublics+2
|
||
|
...
|
||
|
PointC_nPublics+NVars
|
||
|
|
||
|
PointHExp_0
|
||
|
PointHExp_1
|
||
|
...
|
||
|
PointHExp_DomainSize-1
|
||
|
*/
|