tornado-nova/contracts/TornadoPool.sol

236 lines
8.1 KiB
Solidity

// SPDX-License-Identifier: MIT
// https://tornado.cash
/*
* d888888P dP a88888b. dP
* 88 88 d8' `88 88
* 88 .d8888b. 88d888b. 88d888b. .d8888b. .d888b88 .d8888b. 88 .d8888b. .d8888b. 88d888b.
* 88 88' `88 88' `88 88' `88 88' `88 88' `88 88' `88 88 88' `88 Y8ooooo. 88' `88
* 88 88. .88 88 88 88 88. .88 88. .88 88. .88 dP Y8. .88 88. .88 88 88 88
* dP `88888P' dP dP dP `88888P8 `88888P8 `88888P' 88 Y88888P' `88888P8 `88888P' dP dP
* ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
*/
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@openzeppelin/contracts/contracts/token/ERC20/IERC20.sol";
import "./MerkleTreeWithHistory.sol";
import "hardhat/console.sol";
interface IERC6777 is IERC20 {
function transferAndCall(
address,
uint256,
bytes calldata
) external returns (bool);
}
interface IVerifier {
function verifyProof(bytes memory _proof, uint256[7] memory _input) external view returns (bool);
function verifyProof(bytes memory _proof, uint256[21] memory _input) external view returns (bool);
}
interface IERC20Receiver {
function onTokenBridged(
IERC6777 token,
uint256 value,
bytes calldata data
) external;
}
contract TornadoPool is MerkleTreeWithHistory, IERC20Receiver {
int256 public constant MAX_EXT_AMOUNT = 2**248;
uint256 public constant MAX_FEE = 2**248;
mapping(bytes32 => bool) public nullifierHashes;
IVerifier public immutable verifier2;
IVerifier public immutable verifier16;
IERC6777 public immutable token;
address public immutable omniBridge;
address public immutable l1Unwrapper;
struct ExtData {
address recipient;
int256 extAmount;
address relayer;
uint256 fee;
bytes encryptedOutput1;
bytes encryptedOutput2;
bool isL1Withdrawal;
}
struct Proof {
bytes proof;
bytes32 root;
bytes32[] inputNullifiers;
bytes32[2] outputCommitments;
uint256 publicAmount;
bytes32 extDataHash;
}
struct Register {
bytes pubKey;
bytes account;
}
event NewCommitment(bytes32 commitment, uint256 index, bytes encryptedOutput);
event NewNullifier(bytes32 nullifier);
event PublicKey(address indexed owner, bytes key);
event EncryptedAccount(address indexed owner, bytes account);
/**
@dev The constructor
@param _verifier2 the address of SNARK verifier for 2 inputs
@param _verifier16 the address of SNARK verifier for 16 inputs
*/
constructor(
IVerifier _verifier2,
IVerifier _verifier16,
uint32 _levels,
address _hasher,
IERC6777 _token,
address _omniBridge,
address _l1Unwrapper
) MerkleTreeWithHistory(_levels, _hasher) {
verifier2 = _verifier2;
verifier16 = _verifier16;
token = _token;
omniBridge = _omniBridge;
l1Unwrapper = _l1Unwrapper;
}
function transact(Proof memory _args, ExtData memory _extData) public {
if (_extData.extAmount > 0) {
// for deposits from L2
token.transferFrom(msg.sender, address(this), uint256(_extData.extAmount));
}
_transact(_args, _extData);
}
function _transact(Proof memory _args, ExtData memory _extData) internal {
require(isKnownRoot(_args.root), "Invalid merkle root");
for (uint256 i = 0; i < _args.inputNullifiers.length; i++) {
require(!isSpent(_args.inputNullifiers[i]), "Input is already spent");
}
require(uint256(_args.extDataHash) == uint256(keccak256(abi.encode(_extData))) % FIELD_SIZE, "Incorrect external data hash");
require(_args.publicAmount == calculatePublicAmount(_extData.extAmount, _extData.fee), "Invalid public amount");
require(verifyProof(_args), "Invalid transaction proof");
for (uint256 i = 0; i < _args.inputNullifiers.length; i++) {
nullifierHashes[_args.inputNullifiers[i]] = true;
}
if (_extData.extAmount < 0) {
require(_extData.recipient != address(0), "Can't withdraw to zero address");
if (_extData.isL1Withdrawal) {
token.transferAndCall(omniBridge, uint256(-_extData.extAmount), abi.encodePacked(l1Unwrapper, _extData.recipient));
} else {
token.transfer(_extData.recipient, uint256(-_extData.extAmount));
}
}
if (_extData.fee > 0) {
token.transfer(_extData.relayer, _extData.fee);
}
_insert(_args.outputCommitments[0], _args.outputCommitments[1]);
emit NewCommitment(_args.outputCommitments[0], nextIndex - 2, _extData.encryptedOutput1);
emit NewCommitment(_args.outputCommitments[1], nextIndex - 1, _extData.encryptedOutput2);
for (uint256 i = 0; i < _args.inputNullifiers.length; i++) {
emit NewNullifier(_args.inputNullifiers[i]);
}
}
function calculatePublicAmount(int256 _extAmount, uint256 _fee) public pure returns (uint256) {
require(_fee < MAX_FEE, "Invalid fee");
require(_extAmount > -MAX_EXT_AMOUNT && _extAmount < MAX_EXT_AMOUNT, "Invalid ext amount");
int256 publicAmount = _extAmount - int256(_fee);
return (publicAmount >= 0) ? uint256(publicAmount) : FIELD_SIZE - uint256(-publicAmount);
}
/** @dev whether a note is already spent */
function isSpent(bytes32 _nullifierHash) public view returns (bool) {
return nullifierHashes[_nullifierHash];
}
function verifyProof(Proof memory _args) public view returns (bool) {
if (_args.inputNullifiers.length == 2) {
return
verifier2.verifyProof(
_args.proof,
[
uint256(_args.root),
_args.publicAmount,
uint256(_args.extDataHash),
uint256(_args.inputNullifiers[0]),
uint256(_args.inputNullifiers[1]),
uint256(_args.outputCommitments[0]),
uint256(_args.outputCommitments[1])
]
);
} else if (_args.inputNullifiers.length == 16) {
return
verifier16.verifyProof(
_args.proof,
[
uint256(_args.root),
_args.publicAmount,
uint256(_args.extDataHash),
uint256(_args.inputNullifiers[0]),
uint256(_args.inputNullifiers[1]),
uint256(_args.inputNullifiers[2]),
uint256(_args.inputNullifiers[3]),
uint256(_args.inputNullifiers[4]),
uint256(_args.inputNullifiers[5]),
uint256(_args.inputNullifiers[6]),
uint256(_args.inputNullifiers[7]),
uint256(_args.inputNullifiers[8]),
uint256(_args.inputNullifiers[9]),
uint256(_args.inputNullifiers[10]),
uint256(_args.inputNullifiers[11]),
uint256(_args.inputNullifiers[12]),
uint256(_args.inputNullifiers[13]),
uint256(_args.inputNullifiers[14]),
uint256(_args.inputNullifiers[15]),
uint256(_args.outputCommitments[0]),
uint256(_args.outputCommitments[1])
]
);
} else {
revert("unsupported input count");
}
}
function register(Register memory args) public {
emit PublicKey(msg.sender, args.pubKey);
emit EncryptedAccount(msg.sender, args.account);
}
function registerAndTransact(
Register memory _registerArgs,
Proof memory _proofArgs,
ExtData memory _extData
) public {
register(_registerArgs);
transact(_proofArgs, _extData);
}
/// TOTHINK security. should we track all incoming trasfers so we can to double check the bridge actually sent tokens to this contract?
function onTokenBridged(
IERC6777 _token,
uint256,
bytes calldata _data
) external override {
require(_token == token, "provided token is not supported");
require(msg.sender == omniBridge, "only omni bridge"); // we can also get real msg.sender from L1, but it does not matter
(Register memory _registerArgs, Proof memory _args, ExtData memory _extData) = abi.decode(_data, (Register, Proof, ExtData));
if (_registerArgs.pubKey.length != 0 && _registerArgs.account.length != 0) {
register(_registerArgs);
}
_transact(_args, _extData);
}
}