include "./merkleProof.circom" include "./treeUpdater.circom" include "./utils.circom" /* Utxo structure: { amount, blinding, // random number pubkey, } commitment = hash(amount, blinding, pubKey) nullifier = hash(commitment, privKey, merklePath) */ // Universal JoinSplit transaction with nIns inputs and 2 outputs template Transaction(levels, nIns, nOuts, zeroLeaf) { signal input root; // extAmount = external amount used for deposits and withdrawals // correct extAmount range is enforced on the smart contract // publicAmount = extAmount - fee signal input publicAmount; signal input extDataHash; // data for transaction inputs signal input inputNullifier[nIns]; signal private input inAmount[nIns]; signal private input inBlinding[nIns]; signal private input inPrivateKey[nIns]; signal private input inPathIndices[nIns]; signal private input inPathElements[nIns][levels]; // data for transaction outputs signal input outputCommitment[nOuts]; signal private input outAmount[nOuts]; signal private input outBlinding[nOuts]; signal private input outPubkey[nOuts]; component inKeypair[nIns]; component inUtxoHasher[nIns]; component nullifierHasher[nIns]; component tree[nIns]; component checkRoot[nIns]; var sumIns = 0; // verify correctness of transaction inputs for (var tx = 0; tx < nIns; tx++) { inKeypair[tx] = Keypair(); inKeypair[tx].privateKey <== inPrivateKey[tx]; inUtxoHasher[tx] = TransactionHasher(); inUtxoHasher[tx].amount <== inAmount[tx]; inUtxoHasher[tx].blinding <== inBlinding[tx]; inUtxoHasher[tx].publicKey <== inKeypair[tx].publicKey; nullifierHasher[tx] = NullifierHasher(); nullifierHasher[tx].commitment <== inUtxoHasher[tx].commitment; nullifierHasher[tx].merklePath <== inPathIndices[tx]; nullifierHasher[tx].privateKey <== inPrivateKey[tx]; nullifierHasher[tx].nullifier === inputNullifier[tx]; tree[tx] = MerkleProof(levels); tree[tx].leaf <== inUtxoHasher[tx].commitment; tree[tx].pathIndices <== inPathIndices[tx]; for (var i = 0; i < levels; i++) { tree[tx].pathElements[i] <== inPathElements[tx][i]; } // check merkle proof only if amount is non-zero checkRoot[tx] = ForceEqualIfEnabled(); checkRoot[tx].in[0] <== root; checkRoot[tx].in[1] <== tree[tx].root; checkRoot[tx].enabled <== inAmount[tx]; // We don't need to range check input amounts, since all inputs are valid UTXOs that // were already checked as outputs in the previous transaction (or zero amount UTXOs that don't // need to be checked either). sumIns += inAmount[tx]; } component outUtxoHasher[nOuts]; component outAmountCheck[nOuts]; var sumOuts = 0; // verify correctness of transaction outputs for (var tx = 0; tx < nOuts; tx++) { outUtxoHasher[tx] = TransactionHasher(); outUtxoHasher[tx].amount <== outAmount[tx]; outUtxoHasher[tx].blinding <== outBlinding[tx]; outUtxoHasher[tx].publicKey <== outPubkey[tx]; outUtxoHasher[tx].commitment === outputCommitment[tx]; // Check that amount fits into 248 bits to prevent overflow outAmountCheck[tx] = Num2Bits(248); outAmountCheck[tx].in <== outAmount[tx]; sumOuts += outAmount[tx]; } // check that there are no same nullifiers among all inputs component sameNullifiers[nIns * (nIns - 1) / 2]; var index = 0; for (var i = 0; i < nIns - 1; i++) { for (var j = i + 1; j < nIns; j++) { sameNullifiers[index] = IsEqual(); sameNullifiers[index].in[0] <== inputNullifier[i]; sameNullifiers[index].in[1] <== inputNullifier[j]; sameNullifiers[index].out === 0; index++; } } // verify amount invariant sumIns + publicAmount === sumOuts; // optional safety constraint to make sure extDataHash cannot be changed signal extDataSquare <== extDataHash * extDataHash; }