// https://tornado.cash /* * d888888P dP a88888b. dP * 88 88 d8' `88 88 * 88 .d8888b. 88d888b. 88d888b. .d8888b. .d888b88 .d8888b. 88 .d8888b. .d8888b. 88d888b. * 88 88' `88 88' `88 88' `88 88' `88 88' `88 88' `88 88 88' `88 Y8ooooo. 88' `88 * 88 88. .88 88 88 88 88. .88 88. .88 88. .88 dP Y8. .88 88. .88 88 88 88 * dP `88888P' dP dP dP `88888P8 `88888P8 `88888P' 88 Y88888P' `88888P8 `88888P' dP dP * ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo */ pragma solidity ^0.5.8; import "./MerkleTreeWithHistory.sol"; contract IVerifier { function verifyProof(uint256[2] memory a, uint256[2][2] memory b, uint256[2] memory c, uint256[4] memory input) public returns(bool); } contract Mixer is MerkleTreeWithHistory { uint256 public transferValue; bool public isDepositsEnabled = true; // operator can disable new deposits in case of emergency // it also receives a relayer fee address payable public operator; mapping(uint256 => bool) public nullifierHashes; // we store all commitments just to prevent accidental deposits with the same commitment mapping(uint256 => bool) public commitments; IVerifier verifier; event Deposit(uint256 indexed commitment, uint256 leafIndex, uint256 timestamp); event Withdraw(address to, uint256 nullifierHash, uint256 fee); /** @dev The constructor @param _verifier the address of SNARK verifier for this contract @param _transferValue the value for all deposits in this contract in wei */ constructor( address _verifier, uint256 _transferValue, uint8 _merkleTreeHeight, uint256 _emptyElement, address payable _operator ) MerkleTreeWithHistory(_merkleTreeHeight, _emptyElement) public { verifier = IVerifier(_verifier); transferValue = _transferValue; operator = _operator; } /** @dev Deposit funds into mixer. The caller must send value equal to `transferValue` of this mixer. @param commitment the note commitment, which is PedersenHash(nullifier + secret) */ function deposit(uint256 commitment) public payable { require(isDepositsEnabled, "deposits disabled"); require(msg.value == transferValue, "Please send `transferValue` ETH along with transaction"); require(!commitments[commitment], "The commitment has been submitted"); _insert(commitment); commitments[commitment] = true; emit Deposit(commitment, next_index - 1, block.timestamp); } /** @dev Withdraw deposit from the mixer. `a`, `b`, and `c` are zkSNARK proof data, and input is an array of circuit public inputs `input` array consists of: - merkle root of all deposits in the mixer - hash of unique deposit nullifier to prevent double spends - the receiver of funds - optional fee that goes to the transaction sender (usually a relay) */ function withdraw(uint256[2] memory a, uint256[2][2] memory b, uint256[2] memory c, uint256[4] memory input) public { uint256 root = input[0]; uint256 nullifierHash = input[1]; address payable receiver = address(input[2]); uint256 fee = input[3]; require(!nullifierHashes[nullifierHash], "The note has been already spent"); require(fee < transferValue, "Fee exceeds transfer value"); require(isKnownRoot(root), "Cannot find your merkle root"); // Make sure to use a recent one require(verifier.verifyProof(a, b, c, input), "Invalid withdraw proof"); nullifierHashes[nullifierHash] = true; receiver.transfer(transferValue - fee); if (fee > 0) { operator.transfer(fee); } emit Withdraw(receiver, nullifierHash, fee); } function toggleDeposits() external { require(msg.sender == operator, "unauthorized"); isDepositsEnabled = !isDepositsEnabled; } function changeOperator(address payable _newAccount) external { require(msg.sender == operator, "unauthorized"); operator = _newAccount; } function isSpent(uint256 nullifier) public view returns(bool) { return nullifierHashes[nullifier]; } }