snarkjs/src/setup_kimleeoh.js

234 lines
7.4 KiB
JavaScript

/*
Copyright 2018 0kims association.
This file is part of snarkjs.
snarkjs is a free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your option)
any later version.
snarkjs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
snarkjs. If not, see <https://www.gnu.org/licenses/>.
*/
/* Implementation of this paper: https://eprint.iacr.org/2016/260.pdf */
const bigInt = require("./bigint.js");
const BN128 = require("./bn128.js");
const PolField = require("./polfield.js");
const ZqField = require("./zqfield.js");
const bn128 = new BN128();
const G1 = bn128.G1;
const G2 = bn128.G2;
const PolF = new PolField(new ZqField(bn128.r));
const F = new ZqField(bn128.r);
module.exports = function setup(circuit) {
const setup = {
vk_proof : {
protocol: "groth",
nVars: circuit.nVars,
nPublic: circuit.nPubInputs + circuit.nOutputs
},
vk_verifier: {
protocol: "groth",
nPublic: circuit.nPubInputs + circuit.nOutputs
},
toxic: {}
};
setup.vk_proof.domainBits = PolF.log2(circuit.nConstraints + circuit.nPubInputs + circuit.nOutputs +1 -1) +1;
setup.vk_proof.domainSize = 1 << setup.vk_proof.domainBits;
calculatePolinomials(setup, circuit);
setup.toxic.t = F.random();
calculateEncriptedValuesAtT(setup, circuit);
return setup;
};
function calculatePolinomials(setup, circuit) {
setup.vk_proof.polsA = new Array(circuit.nVars);
setup.vk_proof.polsB = new Array(circuit.nVars);
setup.vk_proof.polsC = new Array(circuit.nVars);
for (let i=0; i<circuit.nVars; i++) {
setup.vk_proof.polsA[i] = {};
setup.vk_proof.polsB[i] = {};
setup.vk_proof.polsC[i] = {};
}
for (let c=0; c<circuit.nConstraints; c++) {
for (let s in circuit.constraints[c][0]) {
setup.vk_proof.polsA[s][c] = bigInt(circuit.constraints[c][0][s]);
}
for (let s in circuit.constraints[c][1]) {
setup.vk_proof.polsB[s][c] = bigInt(circuit.constraints[c][1][s]);
}
for (let s in circuit.constraints[c][2]) {
setup.vk_proof.polsC[s][c] = bigInt(circuit.constraints[c][2][s]);
}
}
/**
* add and process the constraints
* input_i * 0 = 0
* to ensure soundness of input consistency
*/
for (let i = 0; i < circuit.nPubInputs + circuit.nOutputs + 1; ++i)
{
setup.vk_proof.polsA[i][circuit.nConstraints + i] = F.one;
}
}
function calculateValuesAtT(setup, circuit) {
const z_t = PolF.computeVanishingPolinomial(setup.vk_proof.domainBits, setup.toxic.t);
const u = PolF.evaluateLagrangePolynomials(setup.vk_proof.domainBits, setup.toxic.t);
const a_t = new Array(circuit.nVars).fill(F.zero);
const b_t = new Array(circuit.nVars).fill(F.zero);
const c_t = new Array(circuit.nVars).fill(F.zero);
// TODO: substitute setup.polsA for coeficients
for (let s=0; s<circuit.nVars; s++) {
for (let c in setup.vk_proof.polsA[s]) {
a_t[s] = F.add(a_t[s], F.mul(u[c], setup.vk_proof.polsA[s][c]));
}
for (let c in setup.vk_proof.polsB[s]) {
b_t[s] = F.add(b_t[s], F.mul(u[c], setup.vk_proof.polsB[s][c]));
}
for (let c in setup.vk_proof.polsC[s]) {
c_t[s] = F.add(c_t[s], F.mul(u[c], setup.vk_proof.polsC[s][c]));
}
}
return {a_t, b_t, c_t, z_t};
}
function calculateEncriptedValuesAtT(setup, circuit) {
const v = calculateValuesAtT(setup, circuit);
setup.vk_proof.A = new Array(circuit.nVars);
setup.vk_proof.Adelta = new Array(circuit.nVars);
setup.vk_proof.B1 = new Array(circuit.nVars);
setup.vk_proof.B2 = new Array(circuit.nVars);
setup.vk_proof.C = new Array(circuit.nVars);
setup.vk_verifier.IC = new Array(circuit.nPublic);
setup.toxic.kalfa = F.random();
setup.toxic.kbeta = F.random();
setup.toxic.kgamma = F.random();
setup.toxic.kdelta = F.random();
const gammaSquare = F.mul(setup.toxic.kgamma, setup.toxic.kgamma);
setup.vk_proof.vk_alfa_1 = G1.affine(G1.mulScalar( G1.g, setup.toxic.kalfa));
setup.vk_proof.vk_beta_1 = G1.affine(G1.mulScalar( G1.g, setup.toxic.kbeta));
setup.vk_proof.vk_delta_1 = G1.affine(G1.mulScalar( G1.g, setup.toxic.kdelta));
setup.vk_proof.vk_alfadelta_1 = G1.affine(G1.mulScalar( G1.g, F.mul(setup.toxic.kalfa, setup.toxic.kdelta)));
setup.vk_proof.vk_beta_2 = G2.affine(G2.mulScalar( G2.g, setup.toxic.kbeta));
setup.vk_verifier.vk_alfa_1 = G1.affine(G1.mulScalar( G1.g, setup.toxic.kalfa));
setup.vk_verifier.vk_beta_2 = G2.affine(G2.mulScalar( G2.g, setup.toxic.kbeta));
setup.vk_verifier.vk_gamma_2 = G2.affine(G2.mulScalar( G2.g, setup.toxic.kgamma));
setup.vk_verifier.vk_delta_2 = G2.affine(G2.mulScalar( G2.g, setup.toxic.kdelta));
setup.vk_verifier.vk_alfabeta_12 = bn128.F12.affine(bn128.pairing( setup.vk_verifier.vk_alfa_1 , setup.vk_verifier.vk_beta_2 ));
for (let s=0; s<circuit.nVars; s++) {
const A = G1.affine(G1.mulScalar(G1.g, F.mul(setup.toxic.kgamma, v.a_t[s])));
setup.vk_proof.A[s] = A;
setup.vk_proof.Adelta[s] = G1.affine(G1.mulScalar(A, setup.toxic.kdelta));
const B1 = G1.affine(G1.mulScalar(G1.g, F.mul(setup.toxic.kgamma, v.b_t[s])));
setup.vk_proof.B1[s] = B1;
const B2 = G2.affine(G2.mulScalar(G2.g, F.mul(setup.toxic.kgamma, v.b_t[s])));
setup.vk_proof.B2[s] = B2;
}
for (let s=0; s<=setup.vk_proof.nPublic; s++) {
let ps =
F.add(
F.mul(
setup.toxic.kgamma,
v.c_t[s]
),
F.add(
F.mul(
setup.toxic.kbeta,
v.a_t[s]
),
F.mul(
setup.toxic.kalfa,
v.b_t[s]
)
)
);
const IC = G1.affine(G1.mulScalar(G1.g, ps));
setup.vk_verifier.IC[s]=IC;
}
for (let s=setup.vk_proof.nPublic+1; s<circuit.nVars; s++) {
let ps =
F.add(
F.mul(
gammaSquare,
v.c_t[s]
),
F.add(
F.mul(
F.mul(setup.toxic.kbeta, setup.toxic.kgamma),
v.a_t[s]
),
F.mul(
F.mul(setup.toxic.kalfa, setup.toxic.kgamma),
v.b_t[s]
)
)
);
const C = G1.affine(G1.mulScalar(G1.g, ps));
setup.vk_proof.C[s]=C;
}
// Calculate HExps
const maxH = setup.vk_proof.domainSize+1;
setup.vk_proof.hExps = new Array(maxH);
const zod = F.mul(gammaSquare, v.z_t);
setup.vk_proof.hExps[0] = G1.affine(G1.mulScalar(G1.g, zod));
let eT = setup.toxic.t;
for (let i=1; i<maxH; i++) {
setup.vk_proof.hExps[i] = G1.affine(G1.mulScalar(G1.g, F.mul(eT, zod)));
eT = F.mul(eT, setup.toxic.t);
}
}