snarkjs/templates/verifier_plonk.sol.ejs
2022-02-16 06:28:03 -07:00

633 lines
23 KiB
Plaintext

// SPDX-License-Identifier: GPL-3.0
/*
Copyright 2021 0KIMS association.
This file is generated with [snarkJS](https://github.com/iden3/snarkjs).
snarkJS is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
snarkJS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License
along with snarkJS. If not, see <https://www.gnu.org/licenses/>.
*/
pragma solidity >=0.7.0 <0.9.0;
contract PlonkVerifier {
uint32 constant n = <%=2**power%>;
uint16 constant nPublic = <%=nPublic%>;
uint16 constant nLagrange = <%=Math.max(nPublic, 1)%>;
uint256 constant Qmx = <%=Qm[0]%>;
uint256 constant Qmy = <%=Qm[0] == "0" ? "0" : Qm[1]%>;
uint256 constant Qlx = <%=Ql[0]%>;
uint256 constant Qly = <%=Ql[0] == "0" ? "0" : Ql[1]%>;
uint256 constant Qrx = <%=Qr[0]%>;
uint256 constant Qry = <%=Qr[0] == "0" ? "0" : Qr[1]%>;
uint256 constant Qox = <%=Qo[0]%>;
uint256 constant Qoy = <%=Qo[0] == "0" ? "0" : Qo[1]%>;
uint256 constant Qcx = <%=Qc[0]%>;
uint256 constant Qcy = <%=Qc[0] == "0" ? "0" : Qc[1]%>;
uint256 constant S1x = <%=S1[0]%>;
uint256 constant S1y = <%=S1[0] == "0" ? "0" : S1[1]%>;
uint256 constant S2x = <%=S2[0]%>;
uint256 constant S2y = <%=S2[0] == "0" ? "0" : S2[1]%>;
uint256 constant S3x = <%=S3[0]%>;
uint256 constant S3y = <%=S3[0] == "0" ? "0" : S3[1]%>;
uint256 constant k1 = 2;
uint256 constant k2 = 3;
uint256 constant X2x1 = <%=X_2[0][0]%>;
uint256 constant X2x2 = <%=X_2[0][1]%>;
uint256 constant X2y1 = <%=X_2[1][0]%>;
uint256 constant X2y2 = <%=X_2[1][1]%>;
uint256 constant q = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
uint256 constant qf = 21888242871839275222246405745257275088696311157297823662689037894645226208583;
uint256 constant w1 = <%=w%>;
uint256 constant G1x = 1;
uint256 constant G1y = 2;
uint256 constant G2x1 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant G2x2 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant G2y1 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant G2y2 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint16 constant pA = 32;
uint16 constant pB = 96;
uint16 constant pC = 160;
uint16 constant pZ = 224;
uint16 constant pT1 = 288;
uint16 constant pT2 = 352;
uint16 constant pT3 = 416;
uint16 constant pWxi = 480;
uint16 constant pWxiw = 544;
uint16 constant pEval_a = 608;
uint16 constant pEval_b = 640;
uint16 constant pEval_c = 672;
uint16 constant pEval_s1 = 704;
uint16 constant pEval_s2 = 736;
uint16 constant pEval_zw = 768;
uint16 constant pEval_r = 800;
uint16 constant pAlpha = 0;
uint16 constant pBeta = 32;
uint16 constant pGamma = 64;
uint16 constant pXi = 96;
uint16 constant pXin = 128;
uint16 constant pBetaXi = 160;
uint16 constant pV1 = 192;
uint16 constant pV2 = 224;
uint16 constant pV3 = 256;
uint16 constant pV4 = 288;
uint16 constant pV5 = 320;
uint16 constant pV6 = 352;
uint16 constant pU = 384;
uint16 constant pPl = 416;
uint16 constant pEval_t = 448;
uint16 constant pA1 = 480;
uint16 constant pB1 = 544;
uint16 constant pZh = 608;
uint16 constant pZhInv = 640;
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %>
uint16 constant pEval_l<%=i%> = <%=640+i*32%>;
<% } %>
uint16 constant lastMem = <%=672+32*Math.max(nPublic,1)%>;
function verifyProof(bytes memory proof, uint[] memory pubSignals) public view returns (bool) {
assembly {
/////////
// Computes the inverse using the extended euclidean algorithm
/////////
function inverse(a, q) -> inv {
let t := 0
let newt := 1
let r := q
let newr := a
let quotient
let aux
for { } newr { } {
quotient := sdiv(r, newr)
aux := sub(t, mul(quotient, newt))
t:= newt
newt:= aux
aux := sub(r,mul(quotient, newr))
r := newr
newr := aux
}
if gt(r, 1) { revert(0,0) }
if slt(t, 0) { t:= add(t, q) }
inv := t
}
///////
// Computes the inverse of an array of values
// See https://vitalik.ca/general/2018/07/21/starks_part_3.html in section where explain fields operations
//////
function inverseArray(pVals, n) {
let pAux := mload(0x40) // Point to the next free position
let pIn := pVals
let lastPIn := add(pVals, mul(n, 32)) // Read n elemnts
let acc := mload(pIn) // Read the first element
pIn := add(pIn, 32) // Point to the second element
let inv
for { } lt(pIn, lastPIn) {
pAux := add(pAux, 32)
pIn := add(pIn, 32)
}
{
mstore(pAux, acc)
acc := mulmod(acc, mload(pIn), q)
}
acc := inverse(acc, q)
// At this point pAux pint to the next free position we substract 1 to point to the last used
pAux := sub(pAux, 32)
// pIn points to the n+1 element, we substract to point to n
pIn := sub(pIn, 32)
lastPIn := pVals // We don't process the first element
for { } gt(pIn, lastPIn) {
pAux := sub(pAux, 32)
pIn := sub(pIn, 32)
}
{
inv := mulmod(acc, mload(pAux), q)
acc := mulmod(acc, mload(pIn), q)
mstore(pIn, inv)
}
// pIn points to first element, we just set it.
mstore(pIn, acc)
}
function checkField(v) {
if iszero(lt(v, q)) {
mstore(0, 0)
return(0,0x20)
}
}
function checkInput(pProof) {
if iszero(eq(mload(pProof), 800 )) {
mstore(0, 0)
return(0,0x20)
}
checkField(mload(add(pProof, pEval_a)))
checkField(mload(add(pProof, pEval_b)))
checkField(mload(add(pProof, pEval_c)))
checkField(mload(add(pProof, pEval_s1)))
checkField(mload(add(pProof, pEval_s2)))
checkField(mload(add(pProof, pEval_zw)))
checkField(mload(add(pProof, pEval_r)))
// Points are checked in the point operations precompiled smart contracts
}
function calculateChallanges(pProof, pMem) {
let a
let b
b := mod(keccak256(add(pProof, pA), 192), q)
mstore( add(pMem, pBeta), b)
mstore( add(pMem, pGamma), mod(keccak256(add(pMem, pBeta), 32), q))
mstore( add(pMem, pAlpha), mod(keccak256(add(pProof, pZ), 64), q))
a := mod(keccak256(add(pProof, pT1), 192), q)
mstore( add(pMem, pXi), a)
mstore( add(pMem, pBetaXi), mulmod(b, a, q))
<%for (let i=0; i<power;i++) {%>
a:= mulmod(a, a, q)
<%}%>
mstore( add(pMem, pXin), a)
a:= mod(add(sub(a, 1),q), q)
mstore( add(pMem, pZh), a)
mstore( add(pMem, pZhInv), a) // We will invert later together with lagrange pols
let v1 := mod(keccak256(add(pProof, pEval_a), 224), q)
mstore( add(pMem, pV1), v1)
a := mulmod(v1, v1, q)
mstore( add(pMem, pV2), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV3), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV4), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV5), a)
a := mulmod(a, v1, q)
mstore( add(pMem, pV6), a)
mstore( add(pMem, pU), mod(keccak256(add(pProof, pWxi), 128), q))
}
function calculateLagrange(pMem) {
let w := 1
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %>
mstore(
add(pMem, pEval_l<%=i%>),
mulmod(
n,
mod(
add(
sub(
mload(add(pMem, pXi)),
w
),
q
),
q
),
q
)
)
<% if (i<Math.max(nPublic, 1)) { %>
w := mulmod(w, w1, q)
<% } %>
<% } %>
inverseArray(add(pMem, pZhInv), <%=Math.max(nPublic, 1)+1%> )
let zh := mload(add(pMem, pZh))
w := 1
<% for (let i=1; i<=Math.max(nPublic, 1); i++) { %>
<% if (i==1) { %>
mstore(
add(pMem, pEval_l1 ),
mulmod(
mload(add(pMem, pEval_l1 )),
zh,
q
)
)
<% } else { %>
mstore(
add(pMem, pEval_l<%=i%>),
mulmod(
w,
mulmod(
mload(add(pMem, pEval_l<%=i%>)),
zh,
q
),
q
)
)
<% } %>
<% if (i<Math.max(nPublic, 1)) { %>
w := mulmod(w, w1, q)
<% } %>
<% } %>
}
function calculatePl(pMem, pPub) {
let pl := 0
<% for (let i=0; i<nPublic; i++) { %>
pl := mod(
add(
sub(
pl,
mulmod(
mload(add(pMem, pEval_l<%=i+1%>)),
mload(add(pPub, <%=32+i*32%>)),
q
)
),
q
),
q
)
<% } %>
mstore(add(pMem, pPl), pl)
}
function calculateT(pProof, pMem) {
let t
let t1
let t2
t := addmod(
mload(add(pProof, pEval_r)),
mload(add(pMem, pPl)),
q
)
t1 := mulmod(
mload(add(pProof, pEval_s1)),
mload(add(pMem, pBeta)),
q
)
t1 := addmod(
t1,
mload(add(pProof, pEval_a)),
q
)
t1 := addmod(
t1,
mload(add(pMem, pGamma)),
q
)
t2 := mulmod(
mload(add(pProof, pEval_s2)),
mload(add(pMem, pBeta)),
q
)
t2 := addmod(
t2,
mload(add(pProof, pEval_b)),
q
)
t2 := addmod(
t2,
mload(add(pMem, pGamma)),
q
)
t1 := mulmod(t1, t2, q)
t2 := addmod(
mload(add(pProof, pEval_c)),
mload(add(pMem, pGamma)),
q
)
t1 := mulmod(t1, t2, q)
t1 := mulmod(t1, mload(add(pProof, pEval_zw)), q)
t1 := mulmod(t1, mload(add(pMem, pAlpha)), q)
t2 := mulmod(
mload(add(pMem, pEval_l1)),
mload(add(pMem, pAlpha)),
q
)
t2 := mulmod(
t2,
mload(add(pMem, pAlpha)),
q
)
t1 := addmod(t1, t2, q)
t := mod(sub(add(t, q), t1), q)
t := mulmod(t, mload(add(pMem, pZhInv)), q)
mstore( add(pMem, pEval_t) , t)
}
function g1_set(pR, pP) {
mstore(pR, mload(pP))
mstore(add(pR, 32), mload(add(pP,32)))
}
function g1_acc(pR, pP) {
let mIn := mload(0x40)
mstore(mIn, mload(pR))
mstore(add(mIn,32), mload(add(pR, 32)))
mstore(add(mIn,64), mload(pP))
mstore(add(mIn,96), mload(add(pP, 32)))
let success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function g1_mulAcc(pR, pP, s) {
let success
let mIn := mload(0x40)
mstore(mIn, mload(pP))
mstore(add(mIn,32), mload(add(pP, 32)))
mstore(add(mIn,64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
mstore(add(mIn,64), mload(pR))
mstore(add(mIn,96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn,32), y)
mstore(add(mIn,64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
mstore(add(mIn,64), mload(pR))
mstore(add(mIn,96), mload(add(pR, 32)))
success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function g1_mulSetC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn,32), y)
mstore(add(mIn,64), s)
success := staticcall(sub(gas(), 2000), 7, mIn, 96, pR, 64)
if iszero(success) {
mstore(0, 0)
return(0,0x20)
}
}
function calculateA1(pProof, pMem) {
let p := add(pMem, pA1)
g1_set(p, add(pProof, pWxi))
g1_mulAcc(p, add(pProof, pWxiw), mload(add(pMem, pU)))
}
function calculateB1(pProof, pMem) {
let s
let s1
let p := add(pMem, pB1)
// Calculate D
s := mulmod( mload(add(pProof, pEval_a)), mload(add(pMem, pV1)), q)
g1_mulSetC(p, Qlx, Qly, s)
s := mulmod( s, mload(add(pProof, pEval_b)), q)
g1_mulAccC(p, Qmx, Qmy, s)
s := mulmod( mload(add(pProof, pEval_b)), mload(add(pMem, pV1)), q)
g1_mulAccC(p, Qrx, Qry, s)
s := mulmod( mload(add(pProof, pEval_c)), mload(add(pMem, pV1)), q)
g1_mulAccC(p, Qox, Qoy, s)
s :=mload(add(pMem, pV1))
g1_mulAccC(p, Qcx, Qcy, s)
s := addmod(mload(add(pProof, pEval_a)), mload(add(pMem, pBetaXi)), q)
s := addmod(s, mload(add(pMem, pGamma)), q)
s1 := mulmod(k1, mload(add(pMem, pBetaXi)), q)
s1 := addmod(s1, mload(add(pProof, pEval_b)), q)
s1 := addmod(s1, mload(add(pMem, pGamma)), q)
s := mulmod(s, s1, q)
s1 := mulmod(k2, mload(add(pMem, pBetaXi)), q)
s1 := addmod(s1, mload(add(pProof, pEval_c)), q)
s1 := addmod(s1, mload(add(pMem, pGamma)), q)
s := mulmod(s, s1, q)
s := mulmod(s, mload(add(pMem, pAlpha)), q)
s := mulmod(s, mload(add(pMem, pV1)), q)
s1 := mulmod(mload(add(pMem, pEval_l1)), mload(add(pMem, pAlpha)), q)
s1 := mulmod(s1, mload(add(pMem, pAlpha)), q)
s1 := mulmod(s1, mload(add(pMem, pV1)), q)
s := addmod(s, s1, q)
s := addmod(s, mload(add(pMem, pU)), q)
g1_mulAcc(p, add(pProof, pZ), s)
s := mulmod(mload(add(pMem, pBeta)), mload(add(pProof, pEval_s1)), q)
s := addmod(s, mload(add(pProof, pEval_a)), q)
s := addmod(s, mload(add(pMem, pGamma)), q)
s1 := mulmod(mload(add(pMem, pBeta)), mload(add(pProof, pEval_s2)), q)
s1 := addmod(s1, mload(add(pProof, pEval_b)), q)
s1 := addmod(s1, mload(add(pMem, pGamma)), q)
s := mulmod(s, s1, q)
s := mulmod(s, mload(add(pMem, pAlpha)), q)
s := mulmod(s, mload(add(pMem, pV1)), q)
s := mulmod(s, mload(add(pMem, pBeta)), q)
s := mulmod(s, mload(add(pProof, pEval_zw)), q)
s := mod(sub(q, s), q)
g1_mulAccC(p, S3x, S3y, s)
// calculate F
g1_acc(p , add(pProof, pT1))
s := mload(add(pMem, pXin))
g1_mulAcc(p, add(pProof, pT2), s)
s := mulmod(s, s, q)
g1_mulAcc(p, add(pProof, pT3), s)
g1_mulAcc(p, add(pProof, pA), mload(add(pMem, pV2)))
g1_mulAcc(p, add(pProof, pB), mload(add(pMem, pV3)))
g1_mulAcc(p, add(pProof, pC), mload(add(pMem, pV4)))
g1_mulAccC(p, S1x, S1y, mload(add(pMem, pV5)))
g1_mulAccC(p, S2x, S2y, mload(add(pMem, pV6)))
// calculate E
s := mload(add(pMem, pEval_t))
s := addmod(s, mulmod(mload(add(pProof, pEval_r)), mload(add(pMem, pV1)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_a)), mload(add(pMem, pV2)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_b)), mload(add(pMem, pV3)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_c)), mload(add(pMem, pV4)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_s1)), mload(add(pMem, pV5)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_s2)), mload(add(pMem, pV6)), q), q)
s := addmod(s, mulmod(mload(add(pProof, pEval_zw)), mload(add(pMem, pU)), q), q)
s := mod(sub(q, s), q)
g1_mulAccC(p, G1x, G1y, s)
// Last part of B
s := mload(add(pMem, pXi))
g1_mulAcc(p, add(pProof, pWxi), s)
s := mulmod(mload(add(pMem, pU)), mload(add(pMem, pXi)), q)
s := mulmod(s, w1, q)
g1_mulAcc(p, add(pProof, pWxiw), s)
}
function checkPairing(pMem) -> isOk {
let mIn := mload(0x40)
mstore(mIn, mload(add(pMem, pA1)))
mstore(add(mIn,32), mload(add(add(pMem, pA1), 32)))
mstore(add(mIn,64), X2x2)
mstore(add(mIn,96), X2x1)
mstore(add(mIn,128), X2y2)
mstore(add(mIn,160), X2y1)
mstore(add(mIn,192), mload(add(pMem, pB1)))
let s := mload(add(add(pMem, pB1), 32))
s := mod(sub(qf, s), qf)
mstore(add(mIn,224), s)
mstore(add(mIn,256), G2x2)
mstore(add(mIn,288), G2x1)
mstore(add(mIn,320), G2y2)
mstore(add(mIn,352), G2y1)
let success := staticcall(sub(gas(), 2000), 8, mIn, 384, mIn, 0x20)
isOk := and(success, mload(mIn))
}
let pMem := mload(0x40)
mstore(0x40, add(pMem, lastMem))
checkInput(proof)
calculateChallanges(proof, pMem)
calculateLagrange(pMem)
calculatePl(pMem, pubSignals)
calculateT(proof, pMem)
calculateA1(proof, pMem)
calculateB1(proof, pMem)
let isValid := checkPairing(pMem)
mstore(0x40, sub(pMem, lastMem))
mstore(0, isValid)
return(0,0x20)
}
}
}