mirror of
https://github.com/tornadocash/circomlibjs.git
synced 2025-01-19 17:31:50 +01:00
302 lines
8.0 KiB
JavaScript
302 lines
8.0 KiB
JavaScript
const fs = require("fs");
|
|
const path = require("path");
|
|
const Scalar = require("ffjavascript").Scalar;
|
|
const ZqField = require("ffjavascript").ZqField;
|
|
const { unstringifyBigInts } = require("ffjavascript").utils;
|
|
|
|
|
|
// Version to write in hexadecimal
|
|
function stringifyBigInts(o) {
|
|
if ((typeof(o) == "bigint") || o.eq !== undefined) {
|
|
return "0x"+o.toString(16);
|
|
} else if (o instanceof Uint8Array) {
|
|
return Scalar.fromRprLE(o, 0);
|
|
} else if (Array.isArray(o)) {
|
|
return o.map(stringifyBigInts);
|
|
} else if (typeof o == "object") {
|
|
const res = {};
|
|
const keys = Object.keys(o);
|
|
keys.forEach( (k) => {
|
|
res[k] = stringifyBigInts(o[k]);
|
|
});
|
|
return res;
|
|
} else {
|
|
return o;
|
|
}
|
|
}
|
|
|
|
const { C, M } = unstringifyBigInts(require("../src/poseidon_constants.json"));
|
|
|
|
const N_ROUNDS_F = 8;
|
|
const N_ROUNDS_P = [56, 57, 56, 60, 60, 63, 64, 63, 60, 66, 60, 65, 70, 60, 64, 68];
|
|
|
|
|
|
function matrix_inverse(Fr, A) {
|
|
const m = A.length;
|
|
const B=[];
|
|
for (let i=0; i<m; i++) {
|
|
if (A[i].length != m) throw new Error("Matrix is not square");
|
|
B[i] = [];
|
|
for (let j=0; j<m; j++) B[i][j] = A[i][j];
|
|
for (let j=0; j<m; j++) B[i][m+j] = i==j ? Fr.one : Fr.zero;
|
|
}
|
|
const n=2*m;
|
|
let h=0; // curRow
|
|
let k=0; // curColumn
|
|
|
|
// Triangularize
|
|
while ((h<m)&&(k<n)) {
|
|
// Find the pivot
|
|
let i_max;
|
|
for (i_max=h; (i_max<m)&&(Fr.isZero(B[i_max][k])); i_max++);
|
|
if (i_max==m) throw new Error("Matrix is not inveritible");
|
|
|
|
[B[h], B[i_max]] = [B[i_max], B[h]];
|
|
|
|
const inv_pivot = Fr.inv(B[h][k]);
|
|
|
|
for (let i=h+1; i<m; i++) {
|
|
const f = Fr.mul(B[i][k], inv_pivot);
|
|
B[i][k] = Fr.zero;
|
|
for (let j=k+1; j<n; j++) B[i][j] = Fr.sub(B[i][j], Fr.mul(B[h][j], f));
|
|
}
|
|
|
|
B[h][k] = Fr.one;
|
|
for (let j=k+1; j<n; j++) B[h][j] = Fr.mul(B[h][j], inv_pivot);
|
|
h++;
|
|
k++;
|
|
}
|
|
|
|
for (let i=m-2; i>=0; i--) {
|
|
for (let i2=i+1; i2<m; i2++) {
|
|
const f = B[i][i2];
|
|
for (let k=m; k<n; k++) B[i][k] = Fr.sub(B[i][k], Fr.mul(f,B[i2][k]));
|
|
B[i][i2] = Fr.zero;
|
|
}
|
|
}
|
|
|
|
for (let i=0; i<m; i++) {
|
|
B[i] = B[i].slice(-m);
|
|
}
|
|
return B;
|
|
}
|
|
|
|
function matrix_print(Fr, A) {
|
|
for (let i=0; i<A.length; i++) {
|
|
let S = "";
|
|
for (let j=0;j<A[i].length; j++) {
|
|
if (j>0) S = S + ", ";
|
|
S = S + Fr.toString(A[i][j]);
|
|
}
|
|
console.log(S);
|
|
}
|
|
}
|
|
|
|
function vec_print(Fr, v) {
|
|
for (let i=0; i<v.length; i++) {
|
|
console.log(Fr.toString(v[i]));
|
|
}
|
|
}
|
|
|
|
function vec_mul_matrix(Fr, v, A) {
|
|
checkSquare(A);
|
|
if (v.length != A.length) throw new Error("Invalid vec mul sizes");
|
|
const res = [];
|
|
for (let j=0; j<v.length; j++) {
|
|
res[j] = Fr.zero;
|
|
for (let i=0; i<A.length; i++) {
|
|
res[j] = Fr.add(res[j], Fr.mul(v[i], A[i][j]));
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
function matrix_mul_vec(Fr, A, v) {
|
|
checkSquare(A);
|
|
if (v.length != A.length) throw new Error("Invalid vec mul sizes");
|
|
const res = [];
|
|
for (let i=0; i<v.length; i++) {
|
|
res[i] = Fr.zero;
|
|
for (let j=0; j<A.length; j++) {
|
|
res[i] = Fr.add(res[i], Fr.mul(A[i][j], v[j]));
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
function matrix_mul(Fr, A, B) {
|
|
checkSquare(A);
|
|
if (A.length != B.length) throw new Error("multiplication different sizes");
|
|
const res = [];
|
|
for (let i=0; i<A.length; i++) {
|
|
res[i] = [];
|
|
for (let j=0; j<A.length; j++) {
|
|
res[i][j] = Fr.zero;
|
|
}
|
|
}
|
|
for (let i=0; i<A.length; i++) {
|
|
for (let j=0; j<A.length; j++) {
|
|
for (let k=0; k<A.length; k++) {
|
|
res[i][j] = Fr.add( res[i][j], Fr.mul(A[i][k], B[k][j]) );
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
function matrix_traspose(A) {
|
|
checkSquare(A);
|
|
const res = [];
|
|
for (let i=0; i<A.length; i++) {
|
|
res[i] = [];
|
|
for (let j=0; j<A.length; j++) {
|
|
res[i][j] = A[j][i];
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
function checkSquare(A) {
|
|
const n= A.length;
|
|
for (let i=0; i<A.length; i++) {
|
|
if (A[i].length != n) throw new Error("Matrix is not square");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
function convertConstants(Fr, t, C, M) {
|
|
let res = [];
|
|
const nRoundsF = N_ROUNDS_F;
|
|
const nRoundsP = N_ROUNDS_P[t - 2];
|
|
|
|
const Minv = matrix_inverse(Fr, M);
|
|
|
|
for (let k=0; k<t; k++) res.push(C[k]);
|
|
|
|
for (let r=0; r<nRoundsF/2-1; r++) {
|
|
const cr = C.slice((r+1)*t, (r+1)*t+t);
|
|
const crt = vec_mul_matrix(Fr, cr, Minv);
|
|
for (let k=0; k<t; k++) res.push(crt[k]);
|
|
}
|
|
|
|
const partialConst = [];
|
|
let acc = [];
|
|
for (let k=0; k<t; k++) acc[k] = C[(nRoundsF/2+ nRoundsP -1 +1)*t+k];
|
|
|
|
for (let r=nRoundsF/2+nRoundsP-1; r>=nRoundsF/2; r--) {
|
|
const accp = vec_mul_matrix(Fr, acc, Minv);
|
|
partialConst.push(accp[0]);
|
|
accp[0] = Fr.zero;
|
|
for (let k=0; k<t; k++) acc[k] = Fr.add(accp[k], C[(r-1+1)*t+k]);
|
|
}
|
|
|
|
const accp = vec_mul_matrix(Fr, acc, Minv);
|
|
for (let k=0; k<t; k++) res.push(accp[k]);
|
|
|
|
for (let i=0; i<partialConst.length; i++) res.push(partialConst[partialConst.length-1-i]);
|
|
|
|
for (let r=nRoundsF/2 + nRoundsP; r< nRoundsF+nRoundsP-1; r++) {
|
|
const cr = C.slice((r+1)*t, (r+1)*t+t);
|
|
const crt = vec_mul_matrix(Fr, cr, Minv);
|
|
for (let k=0; k<t; k++) res.push(crt[k]);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
/*
|
|
m_{0,0} m_{0,1} m_{0,2} ........... m_{0,t-1}
|
|
w_0 1 0 ........... 0
|
|
w_1 0 1 ........... 0
|
|
. . . . .
|
|
. . . . .
|
|
w_{t-2} 0 0 ........... 1
|
|
*/
|
|
// Returns sparse matrix with format: [m_{0,0}, m_0, ..... m_{t-2}, m_{0,1}, ... m_{0, t-1}]
|
|
|
|
function sparseFactorize(Fr, m) {
|
|
|
|
const m_hat = [];
|
|
const mp = [];
|
|
const w = [];
|
|
for (let i=0; i<m.length; i++) {
|
|
mp[i] = [];
|
|
if (i<m.length-1) m_hat[i] = [];
|
|
for (let j=0; j<m.length; j++) {
|
|
if ((i>0) &&(j>0)) {
|
|
m_hat[i-1][j-1] = m[i][j];
|
|
mp[i][j] = m[i][j];
|
|
} else {
|
|
mp[i][j] = ((i==0)&&(j==0)) ? Fr.one : Fr.zero;
|
|
}
|
|
if ((i>0)&&(j==0)) w[i-1] = m[i][j];
|
|
}
|
|
}
|
|
const m_hat_inv = matrix_inverse(Fr, m_hat);
|
|
const wp = matrix_mul_vec(Fr, m_hat_inv, w);
|
|
|
|
const S = [];
|
|
|
|
S.push(m[0][0]);
|
|
for (let k=0; k<wp.length; k++) S.push(wp[k]);
|
|
for (let k=1; k<m.length; k++) S.push(m[0][k]);
|
|
|
|
return [mp, S];
|
|
}
|
|
|
|
function calculatePS(Fr, t, M) {
|
|
const nRoundsP = N_ROUNDS_P[t - 2];
|
|
const sparse = [];
|
|
let m=M;
|
|
|
|
for (let i=0; i<nRoundsP; i++) {
|
|
const [mp, mpp] = sparseFactorize(Fr, m);
|
|
sparse.push(mpp);
|
|
m = matrix_mul(Fr, M, mp);
|
|
}
|
|
const P = m;
|
|
const S = [];
|
|
|
|
for (let i=0; i<sparse.length; i++) {
|
|
for (let k=0; k<sparse[sparse.length-1-i].length; k++) {
|
|
S.push(sparse[sparse.length-1-i][k]);
|
|
}
|
|
}
|
|
|
|
return [P, S];
|
|
}
|
|
|
|
|
|
async function run() {
|
|
// Prime bn128
|
|
const Fr = new ZqField(Scalar.fromString("21888242871839275222246405745257275088548364400416034343698204186575808495617"));
|
|
|
|
let opt = {
|
|
C: [],
|
|
M: [],
|
|
P: [],
|
|
S: []
|
|
};
|
|
for (let i=1; i<=16; i++) {
|
|
const oM = matrix_traspose(M[i-1]);
|
|
const oC = convertConstants(Fr, i+1, C[i-1], oM);
|
|
const [oP, oS] = calculatePS(Fr, i+1, oM);
|
|
opt.C.push(oC);
|
|
opt.M.push(oM);
|
|
opt.P.push(oP);
|
|
opt.S.push(oS);
|
|
}
|
|
|
|
opt = stringifyBigInts(opt);
|
|
|
|
fs.writeFileSync(path.join(__dirname, "..", "src", "poseidon_constants_opt.json"), JSON.stringify(opt, null, 1), "utf8");
|
|
}
|
|
|
|
run().then(()=> {
|
|
process.exit(0);
|
|
}, (err) => {
|
|
// console.log(err);
|
|
console.log(err.stack);
|
|
process.exit(1);
|
|
}); |