--- description: >- How to construct the beginnings of an awesome algorithm for C2D compute jobs on datasets --- # Make a Boss C2D Algorithm {% embed url="https://media3.giphy.com/media/cub3pntkz8muQ/giphy.gif?cid=ecf05e47o9fdrqco4jqpeyh7899whqgw5tnd43elr023rykr&ep=v1_gifs_search&rid=giphy.gif" %} The beginning of any great algorithm for Compute-to-Data first starts by referencing the dataset file correctly on the Docker container. Here is the code in both Python and Javascript for how to correctly reference your dataset file on the Docker container: ### Python - Open the local dataset file ``` import csv import json import os def get_input(local=False): dids = os.getenv("DIDS", None) if not dids: print("No DIDs found in the environment. Aborting.") return dids = json.loads(dids) for did in dids: filename = f"data/inputs/{did}/0" # 0 for metadata service print(f"Reading asset file {filename}.") return filename # Get the input filename using the get_input function input_filename = get_input() if not input_filename: # No input filename returned exit() # Open the file & run your code with open(input_filename, 'r') as file: # Read the CSV file csv_reader = csv.DictReader(file) ``` **Note:** Here are the following Python libraries that you can use in your code: ``` // Python modules numpy==1.16.3 pandas==0.24.2 python-dateutil==2.8.0 pytz==2019.1 six==1.12.0 sklearn xlrd == 1.2.0 openpyxl >= 3.0.3 wheel matplotlib ``` ### Javascript - Open the local dataset file ``` const fs = require("fs"); var input_folder = "/data/inputs"; var output_folder = "/data/outputs"; async function processfolder(Path) { var files = fs.readdirSync(Path); for (var i =0; i < files.length; i++) { var file = files[i]; var fullpath = Path + "/" + file; if (fs.statSync(fullpath).isDirectory()) { await processfolder(fullpath); } else { } } } // Open the file & run your code processfolder(input_folder); ```