BigchainDB: A Scalable Blockchain Database
(DRAFT)

McConaghy, Trent Marques, Rodolphe Miiller, Andreas
De Jonghe, Dimitri McConaghy, Troy McMullen, Greg
Henderson, Ryan Bellemare, Sylvain Granzotto, Alberto

February 10, 2016
ascribe GmbH, Berlin, Germany

This paper describes BigchainDB. BigchainDB fills a gap in the decentral-
ization ecosystem: a decentralized database, at scale. It points to perfor-
mance of 1 million writes per second throughput, storing petabytes of data,
and sub-second latency. The BigchainDB design starts with a distributed
database (DB), and through a set of innovations adds blockchain characteris-
tics: decentralized control, immutability, and creation & movement of digital
assets. BigchainDB inherits characteristics of modern distributed databases:
linear scaling in throughput and capacity with the number of nodes, a full-
featured NoSQL query language, efficient querying, and permissioning. Being
built on an existing distributed DB, it also inherits enterprise-hardened code
for most of its codebase. Scalable capacity means that legally binding con-
tracts and certificates may be stored directly on the blockchain database. The
permissioning system enables configurations ranging from private enterprise
blockchain databases to open, public blockchain databases. BigchainDB is
complementary to decentralized processing platforms like Ethereum, and de-
centralized file systems like InterPlanetary File System (IPFS). This paper
describes technology perspectives that led to the BigchainDB design: tra-
ditional blockchains, distributed databases, and a case study of the domain
name system (DNS). We introduce a concept called blockchain pipelining,
which is key to scalability when adding blockchainlike characteristics to the
distributed DB. We present a thorough description of BigchainDB, an anal-
ysis of latency, and preliminary experimental results. The paper concludes
with a description of use cases.

1. Introduction

1.1. Towards a Decentralized Application Stack

The introduction of Bitcoin [I] has triggered a new wave of decentralization in computing.
Bitcoin illustrated a novel set of benefits: decentralized control, where “no one” owns or
controls the network; immutability, where written data is tamper-resistant (“forever”);
and the ability to create & transfer assets on the network, without reliance on a central
entity.

The initial excitement surrounding Bitcoin stemmed from its use as a token of value,
for example as an alternative to government-issued currencies. As people learned more
about the underlying blockchain technology, they extended the scope of the technology
itself (e.g. smart contracts), as well as applications (e.g. intellectual property).

With this increase in scope, single monolithic “blockchain” technologies are being
re-framed and refactored into building blocks at four levels of the stack:

1. Applications
2. Decentralized computing platforms (“blockchain platforms”)

3. Decentralized processing (“smart contracts”) and decentralized storage (file sys-
tems, databases), and decentralized communication

4. Cryptographic primitives, consensus protocols, and other algorithms

1.2. Blockchains and Databases

We can frame a traditional blockchain as a database (DB), in the sense that it provides a
storage mechanism. If we measure the Bitcoin blockchain by traditional DB criteria, it’s
terrible: throughput is just a few transactions per second (tps), latency before a single
confirmed write is 10 minutes, and capacity is a few dozen GB. Furthermore, adding
nodes causes more problems: with a doubling of nodes, network traffic quadruples with
no improvement in throughput, latency, or capacity. It also has essentially no querying
abilities: a NoQLT database.

In contrast, a modern distributed DB can have throughput exceeding 1 million tps,
capacity of Petabytes and beyond, latency of a fraction of a second, and throughput
and capacity that increases as nodes get added. Modern DBs also have rich abilities
for insertion, queries, and access control in SQL or NoSQL flavors; in fact SQL is an
international ANSI and ISO standard.

1.3. The Need for Scale

Decentralized technologies hold great promise to rewire modern financial systems, supply
chains, creative industries, and even the Internet itself. But these ambitious goals need

"We are introducing the term NoQL to describe a database with essentially no query abilities. This
term is not to be confused with the database company noql (http://www.noql.com)).

http://www.noql.com

scale: the storage technology needs throughput of up to millions of transactions per
second (or higher), sub-second latencyﬂ and capacity of petabytes or more. These needs
exceed the performance of the Bitcoin blockchain by many orders of magnitude.

1.4. BigchainDB : Blockchains Meet Big Data

This paper introduces BigchainDB, which is for database-style decentralized storage:
a blockchain database. BigchainDB combines the key benefits of distributed DBs and
traditional blockchains, with an emphasis on scale, as Table [1| summarizes.

Table 1: BigchainDB compared to traditional blockchains, and traditional distributed
DBs

Traditional

Traditional Blockchain Distributed DB BigchainDB

High Throughput; in-
creases with nodes?t

Low Latency -

High Capacity; in-
creases with nodes?

v
v
Rich querying - v
v

Rich permissioning -

Decentralized control v -

NI AN AN N N ENE RN

Immutability v -

Creation & movement

of digital assets v) v

Event chain structure Merkle Tree - Hash Chain

We built BigchainDB on top of an enterprise-grade distributed DB, from which BigchainDB
inherits high throughput, high capacity, low latency, a full-featured efficient NoSQL
query language, and permissioning. Nodes can be added to increase throughput and
capacity.

BigchainDB has the traditional blockchain benefits of decentralized control, immutabil-
ity, and creation & transfer of assets. The decentralized control is via a federation of
nodes with voting permissions, that is, a super-peer P2P network [2]. The voting oper-
ates at a layer above the DB’s built in consensus. Immutability / tamper-resistance is
via an ordered sequence of blocks where each block holds an ordered sequence of trans-
actions; and a block’s hash is over its transactions and related data, and the previous
block’s hash; that is, a block chain. Any entity with asset-issuance permissions can is-
sue an asset; any entity with asset-transfer permissions and the asset’s private key may

2Tt takes light 140 ms to make one trip around the world, or 70 ms halfway around. Some financial
applications need 30-100 ms latency, though due to speed-of-light constraints those necessarily need
to be more locally constrained. Section @ explores this in detail.

Centralized Decentralized
I

Applications Applications Applications
Platform (e.g. AWS) Platform (e.g. AWS) Platform (e.g. Ethereum)
Processing (e.g. EC2) Processing (e.g. EC2) Processing (e.g. Eth VM)
File System || Database File System || Database File System || Database
(e.g.S3) ||(e.g. MySQL) (e.g.S3) BigchainDB (e.g. IPFS) || BigchainDB

Figure 1: From a base context of a centralized cloud computing ecosystem (left),
BigchainDB can be added as another database to gain some decentraliza-
tion benefits (middle). It also fits into a full-blown decentralization ecosystem
(right).

transfer the asset. This means hackers or compromised system admins cannot arbitrarily
change data, and there is no single-point-of-failure risk.

Scalable capacity means that legally binding contracts and certificates may be stored
directly on the blockchain DB. The permissioning system enables configurations ranging
from private enterprise blockchain DBs to open, public blockchain DBs. As we deploy
BigchainDB, we are also deploying a public version.

1.5. BigchainDB in the Decentralization Ecosystem

Figure [1] illustrates how BigchainDB can be used in a fully decentralized setting, or as a
mild extension from a traditional centralized computing context.

BigchainDB is complementary to decentralized processing / smart contracts (e.g.
Ethereum VM [3][4] or Enigma [5][6]), decentralized file systems (e.g. IPFS [7]), and
communication building blocks (e.g. email). It can be included in higher-level decen-
tralized computing platforms (e.g. Eris/Tendermint [8][9]). It can be used side-by-side
with identity protocols, financial asset protocols (e.g. Bitcoin [I]), intellectual property
asset protocols (e.g. SPOOL [I0]), and glue protocols (e.g. pegged sidechains [I1], In-
terledger [12]). Scalability improvements to smart contracts blockchains will help fully
decentralized applications to better exploit the scalability properties of BigchainDB.

BigchainDB works in compliance with more centralized computing blocks too. One
use case is where decentralizing just storage brings the majority of benefit. Another use
case is where scalability needs are greater than the capabilities of existing decentralized
processing technologies; in this case BigchainDB provides a bridge to an eventual fully-
decentralized system.

1.6. Contents

This paper first gives background on related building blocks, with an eye to scale:
e Section [2| - traditional blockchain scalability,
e Section [3] - distributed DBs, and

Then, this paper describes BigchainDB as follows:

Section [4] - BigchainDB description,

Section - BigchainDB implementation, including capacity vs. nodes (Figure ,

Section [] - BigchainDB latency analysis,

Section [7] - private vs. public BigchainDBs in a permissioning context,

Section 8| - BigchainDB benchmarks, including throughput vs. nodes (Figure ,

Section [9] - BigchainDB deployment, including use cases and timeline, and
e Section [10] - conclusion.

The appendices contain:
e Appendix [A]- a glossary, e.g. clarifying “distributed” vs. “decentralized”,
e Appendix [B]- blockchain scalability proposals, and
e Appendix [C|- the Domain Name System (DNS).

e Appendix [D] - further BigchainDB benchmarks.

2. Background: Traditional Blockchain Scalability

This section discusses how traditional blockchains perform with respect to scalability,
with an emphasis on Bitcoin.

2.1. Technical Problem Description

Technically speaking, a traditional blockchain is a distributed database (DB) that solves
the “Strong Byzantine Generals” (SBG) problem [13], the name given to a combination
of the Byzantine Generals problem and the Sybil Attack problem. In the Byzantine
Generals problem [I4], nodes need to agree on some value for a DB entry, under the con-
straint that the nodes may fail in arbitrary (malicious) ways. The Sybil Attack problem
[15] arises when one or more nodes figure out how to get unfairly disproportionate influ-
ence in the process of agreeing on a value for an entry. It’s an “attack of the clones”—an
army of seemingly independent voters actually working together to game the system.

2.2. Bitcoin Scalability Issues

Bitcoin has scalability issues in terms of throughput, latency, capacity, and network
bandwidth.

Throughput. The Bitcoin network processes just 1 transaction per second (tps) on
average, with a theoretical maximum of 7 tps [16]. It could handle higher throughput
if each block was bigger, though right now making blocks bigger would lead to size is-
sues (see Capacity and network bandwidth, below). This throughput is unacceptably
low when compared to the number of transactions processed by Visa (2,000 tps typical,
10,000 tps peak) [17], Twitter (5,000 tps typical, 15,000 tps peak), advertising net-
works (500,000 tps typical), trading networks, or email networks (global email volume
is 183 billion emails/day or 2,100,000 tps [18]). An ideal global blockchain, or set of
blockchains, would support all of these multiple high-throughput uses.

Latency. Each block on the Bitcoin blockchain takes 10 minutes to process. For suffi-
cient security, it is better to wait for about an hour, giving more nodes time to confirm
the transaction. By comparison, a transaction on the Visa network is approved in sec-
onds at most. Many financial applications need latency of 30 to 100 ms.

Capacity and network bandwidth. The Bitcoin blockchain is about 50 GB; it grew
by 24 GB in 2015 [19]. It already takes nearly a day to download the entire blockchain. If
throughput increased by 2, 000x to Visa levels, the additional transactions would result in
database growth of 3.9 GB/day or 1.42 PB/year. At 150,000 tps, the blockchain would
grow by 214 PB/year (yes, petabytes). If throughput were 1M tps, it would completely
overwhelm the bandwidth of any node’s connection, which is counterproductive to the
democratic goals of Bitcoin.

2.3. Technology Choices Affecting Scalability
The Bitcoin blockchain has taken three technology choices, which hurt scaling:

1. Consensus Algorithm: POW. Bitcoin’s mining rewards actually incentivizes
nodes to increase computational resource usage, without any additional gains in
throughput, latency, or capacity. A single confirmation from a node takes 10
minutes on average, and six confirmations take an hour. In Bitcoin this is by
design; Litecoin and other altcoins reduce the latency, but compromise security.

2. Replication: Full. That is, each node stores a copy of all the data; a “full node”.
This copy is typically kept on a single hard drive (or in memory). Ironically, this
causes centralization: as amount of data grows, only those with the resources to
hold all the data will be able to participate.

3. Communication Protocol: Broadcast. Bitcoin uses a simple broadcast net-
work to propagate transactions, meaning that bandwidth use increases as a square
of the number of nodes in terms of bandwidth overhead. For example, 10x more
nodes uses 100x more network traffic. Right now there are approximately 6,500
nodes, so every new node has 6,500 nodes worth of communication to deal with.

Any one of these characteristics prevents Bitcoin blockchain from scaling up.

2.4. Blockchain Scalability Efforts

The Bitcoin / blockchain community has spent considerable effort to scale performance
of blockchains. The Appendix gives reviews these proposals in more detail.

Most effort has been on improving one characteristic: the consensus algorithm, for
example via proof of stake (POS). To our knowledge, no previous work has addressed
all three issues. So, a necessary but not sufficient constraint in BigchainDB design is to
avoid these three technology choices.

What previous approaches share in common is that they are all starting with a
blockchain design, then trying to increase its performance. There’s another way: start
with a “big data” distributed database, then give it blockchain-like characteristics.

3. Background: Distributed Databases & Big Data

3.1. Introduction

We ask: does the world have any precedents for distributed databases at massive scale?
The answer is yes. All large Internet companies, and many small ones, run “big data”
distributed databases (DBs), including Facebook, Google, Amazon and Netflix. For
example, at any given time Netflix might be serving up content making up 35% of the
bandwidth of the entire Internet [20].

Distributed DBs regularly store petabytes (1,000,000 GB) or more worth of content.
In contrast, the Bitcoin blockchain currently stores 50 GB, the capacity of a modern
thumb drive. There are initiatives to prevent “blockchain bloat” caused by “dust” or
“junk” transactions that “pollute” Bitcoin’s 50 GB database [21].

In light of petabyte-capacity DBs, it is ironic that a 50 GB database would be con-
cerned by “bloat”. But let’s look at it another way: perhaps distributed DB technology
has lessons for blockchain DB design.

Let’s explore distributed DB scalability further.

Figure [2]illustrates the throughput properties of Cassandra, a distributed DB technol-
ogy used by Netflix. At the bottom left of the plot, we see that 50 distributed Cassandra
nodes handle 174,000 tps. Increasing to 300 nodes gives 1.1 million transactions per sec-
ond (tps) [22]. A follow-up study three years later showed a throughput of 1 million tps
with just a few dozen nodes [23]. To emphasize: the throughput of this DB increased
as the number of nodes increased. The scaling is linear: 10x more nodes means (10c)x
more throughput, where 0 < ¢ < 1.

Each node also stores data. Critically, a node only stores a subset of all data, that
is, it has partial replication. In the Netflix example [23], each piece of data has three
copies in the system, i.e. a replication factor of three. Partial replication enables an
increase in the number of nodes to increase storage capacity. Most modern distributed
DBs have a linear increase in capacity with the number of nodes, an excellent property.

1200000

1099837

1000000

800000

600000

400000

200000

0
0 50 100 150 200 250 300 350

Figure 2: Netflix experimental data on throughput of its Cassandra database (Client
writes/s by node count - Replication Factor=3). The x-axis is number of
nodes; the y-axis is transactions per second. From [22].

Additionally, as the number of nodes increases, Cassandra’s latency and network usage
does not worsen. Cassandra can be distributed at scale not only throughout a region,
but around the globe. Contrast this to the Bitcoin blockchain, where capacity does not
change as the number of nodes increases.

The scalability properties of distributed DBs like Cassandra make an excellent refer-
ence target.

3.2. Consensus Algorithms in Distributed Databases
3.2.1. Introduction

Cassandra achieves its scale because it avoids scalability-killing decisions like making a
full copy of all the data at every node, the baggage of mining, coins, and the like.
What Cassandra does have is a consensus algorithm that uses 2f 4+ 1 processes to
tolerate f benign processes [24], which is used to get the distributed data to synchronize.
Synchronizing distributed data was in fact the original motivation for the BG problem.
The problem was first documented in 1980 by Leslie Lamport and colleagues [25], and
solved two years later, also by Lamport and colleagues. The solution is the Paxos
protocol [14] with versions that can tolerate f Byzantine faults using 3f + 1 processes

126, 27

3Benign faults are system crashes, lost messages, and the like. In systems with benign faults, all nodes
are assumed to follow the same protocol. Byzantine faults include benign faults, but also deviations
from the protocol, including lying, collusion, selective non-participation, and other arbitrary behavior.

3.2.2. Paxos Consensus Algorithm

This section describes the origins of Paxos. In 1980, Lamport challenged colleagues with
the following question:

Can you implement a distributed database that can tolerate the failure of
any number of its processes (possibly all of them) without losing consistency,
and that will resume normal behavior when more than half the processes are
again working properly? [2§]

It was generally assumed at the time that a three-processor system could
tolerate one faulty processor. Lamport’s paper introduced the problem of
handling “Byzantine” faults, in which a faulty processor sends inconsistent
information to the other processors, which can defeat any traditional three-
processor algorithm. In general, 3f + 1 processors are needed to tolerate f
faults. However, if digital signatures are used, 2f + 1 processors are enough.
This was the first precise statement of the consensus problem [14].

Lamport then set out to prove the problem was impossible to solve [2§].
Instead, in a happy accident, he discovered the Paxos algorithm [24].

At the heart of Paxos is a three-phase consensus protocol. Lamport wrote,
“to my knowledge, Paxos contains the first three-phase commit algorithm
that is a real algorithm, with a clearly stated correctness condition and a
proof of correctness” [28]. Paxos overcame the impossibility result of Fischer
et al. [29] by using clocks to ensure liveness.

3.3. Extensions to Paxos Consensus

The original Paxos could handle arbitrary benign (non-Byzantine) failures
such as network delays, packet loss, system crashes and so on.

Several Byzantine fault tolerant systems were designed in the 1980s [30],
including Draper’s FTMP [31], Honeywell’s MMFCS [32], and SRI's SIFT
[33].

However, those early systems were slow when it came to faults. Lam-
port’s “Fast Paxos” [34] and Castro’s “Practical Byzantine Fault Tolerance”
(PBFT) [27] improved upon speed under malicious conditions. Aardvark [35]
and RBFT [36] are examples of continued research in speed and reliability.

Paxos is notoriously difficult to understand, and risky to implement. To
address this, Raft [37] was designed specifically for ease of understanding,
and consequent lower implementation risk. It has a robust variant [38].

The recent Stellar protocol allows each node to choose which other nodes to
trust for validation [39].

3.4. Usage / Ecosystem

Mike Burrows of Google (co-inventor of Google’s Chubby, BigTable, and
Dapper) has said “There is only one consensus protocol, and that’s Paxos,”
[40] and “all working protocols for asynchronous consensus we have so far
encountered have Paxos at their core” [41]. Henry Robinson of Cloudera has
said “all other approaches are just broken versions of Paxo” and “it’s clear
that a good consensus protocol is surprisingly hard to find.” [40]ﬂ

Paxos and its lineage is used at Google, IBM, Microsoft, OpenReplica, VM Ware,
XtreemF'S, Heroku, Ceph, Clustrix, Neo4j, and certainly many more [42].

3.5. Replication factor & blockchain “full nodes”

A modern distributed DB is designed to appear like a single monolithic DB,
but under the hood it distributes storage across a network holding many
cheap storage devices. Each data record is stored redundantly on multiple
drives, so if a drive fails the data can still be easily recovered. If only one
disk fails at a time, there only needs to be one backup drive for that data.
The risk can be made arbitrarily small, based on assumptions of how many
disks might fail at once. Modern distributed DBs typically have 3 backups
per data object, a replication factor of 3 [43].

In contrast, Bitcoin has about 6,500 full nodes [44]—a replication factor
of 6,500. The chance of all nodes going down at once in any given hour
(assuming complete independence) is (1/8760)%% or 10725626, The chance
of all nodes going down would occur once every 3,000 billion years. To say
this is overkill is to put it mildly.

Of course, hardware failure is not the only reason for lost data. Attacks
against the nodes of the network have a much higher probability of destroy-
ing data. A well-targeted attack to 2 or 3 mining pools could just remove 50%
of the computing power from the current Bitcoin network, making the net-
work unusable until the next adjustment to POW complexity, which happens
about every two weeks.

3.6. Strengths and Weaknesses

Let’s review the strengths and weaknesses of DBs that use Paxos-style dis-
tributed consensus algorithms.

Strengths. As discussed above, Paxos is a proven consensus algorithm that
tolerates benign faults and extensions for Byzantine tolerance have been re-
ported. It is used by “big data” distributed DBs with the well-documented

4An especially interesting statement in light of efforts the Bitcoin community is spending on consensus
algorithms.

10

ability to handle high throughput, low latency, high capacity, efficient net-
work utilization, and any shape of data, including table-like SQL interfaces,
object structures of NoSQL DBs, and graph DBs, and they handle replication
in a sane fashion. Derivatives like Raft make distributed consensus systems
easier to design and deploy.

Weaknesses. While their technical attributes and performance are impres-
sive, traditional “big data” distributed DBs are not perfect: they are cen-
tralized. They are deployed by a single authority with central control, rather
than decentralized control as in blockchains. This creates a number of fail-
ings. Centralized DBs are:

e Susceptible to a single point of failure, where a single node being
hacked can be disastrous. This flaw is what lead to hacks at Target,
Sony, the U.S. Office of Personnel Management (OPM),and many others
[45], 146].

e Mutable. A hacker could change a 5-year-old record without anyone
noticing (assuming no additional safeguards in place). For example, this
would have prevented police from doctoring evidence in the India exam
scandal [47]. Such tampering is not possible in blockchains because past
transactions cannot be changed or deleted, as each new block contains
a “hash” digest of all previous blocks.

e Not usable by participants with divergent interests in situations
where they do not want to cede control to a single administrator. For
example, the risk of losing control of the management of information
is one reason that copyright rightsholders in the music industry do not
share a single DB.

e Not designed to stop Sybil attacks, where one errant node can
swamp all the votes in the system.

e Traditionally without support for the creation and transfer
of digital assets where only the owner of the digital asset, not the
administrator of the DB, can transfer the asset.

e Not typically open to the public to even read, let alone write.
Public openness is important for public utilities. A notable exception
is WikiData [48].

3.7. Fault Tolerance in the BigchainDB System

Simultaneously preserving the scalability and trustless decentralization of
both large-scale databases and decentralized blockchains is the main objec-
tive of the BigchainDB system. The following were considered when design-
ing BigchainDB’s security measures:

11

e Benign faults: In the BigchainDB setup, nodes communicate through
a database which uses a fault-tolerant consensus protocol such as Raft
or Paxos. Hence we can assume that if there are 2+ 1 nodes, f benign-
faulty nodes can be tolerated (at any point in time) and each node sees
the same order of writes to the database.

e Byzantine faults: In order to operate in a trustless network, BigchainDB
incorporates measures against malicious or unpredictable behavior of
nodes in the system. These include mechanisms for voting upon trans-
action and block validation. Efforts to achieve full Byzantine tolerance
are on the roadmap and will be tested with regular security audits.

e Sybil Attack: Deploying BigchainDB in a federation with a high bar-
rier of entry based on trust and reputation discourages the participants
from performing an attack of the clones. The DNS system, for example,
is living proof of an Internet-scale distributed federation. Appendix [C]
describes how the DNS has successfully run a decentralized Internet-
scale database for decades.

4. BigchainDB Description

4.1. Principles

Rather than trying to scale up blockchain technology, BigchainDB starts
with a “big data” distributed database, and adds blockchain characteristics.
It avoids the technology choices that plague Bitcoin, such as full replication
and broadcast communication.

We built BigchainDB on top of an enterprise-grade distributed DB, from
which BigchainDB inherits high throughput, high capacity, a full-featured
NoSQL query language, efficient querying, and permissioning. Nodes can be
added to increase throughput and capacity.

Since the big data DB has its own built-in consensus algorithm to tolerate
benign faults, we exploit that solution directly. We “get out of the way”
of the algorithm to let it decide which transactions to write, and what the
block order is. We disallow private, peer-to-peer communication between
the nodes except via the DB’s built-in communication, for great savings in
complexity and for reduced security risk[ﬂ This means that malicious nodes
cannot transmit one message to part of the network and different message
to other part of the network. Everytime a node “speaks” all the others can
listen.

5Though we must vigilantly exercise restraint in design, as intuition is to just get the nodes talking
directly!

12

4.2. High-Level Description

We focused on the adding the following blockchain features to the DB:
1. Decentralized control, where “no one” owns or controls a network;
2. Immutability, where written data is tamper-resistant (“forever”); and

3. The ability to create & transfer assets on the network, without
reliance on a central entity.

Decentralized control is achieved via a DNS-like federation of nodes with vot-
ing permissions. Other nodes can connect to read, and propose transactions;
this makes it a super-peer P2P network [2]. The voting operates at a layer
above the DB’s built in consensus. Quorum is a majority of votes. For speed,
all transactions are written independent of their validity; votes are done a
posteriori. A network with 2f + 1 voting nodes that communicate openly
(ie. through the database) can tolerate f malicious nodeﬁ [14].

Immutability is via an ordered sequence of blocks where each block holds an
ordered sequence of transactions; and a block’s hash is over its transactions
and related data; that is, a block chain. Blocks are written, then voted upon.
Chainification actually happens at voting time. A block doesn’t have a top-
level link to the previous block. Instead, it has a list of votes, and each vote
has a “previous block” attribute pointing to the id of the block coming before
it.

Any entity with asset-issuance permissions can issue an asset; any entity
with asset-transfer permissions and the asset’s private key may transfer the
asset. This means hackers or compromised system admins cannot arbitrarily
change data, and there is no single-point-of-failure risk.

4.3. Architecture

Figure[Jillustrates the architecture of the BigchainDB system. The BigchainDB
system presents its API to clients as if it was a single blockchain database.
Under the hood, there are actually two distributed databasesﬂ S (transaction
set or “backlog”) and C (block chain), connected by the BigchainDB Con-
sensus Algorithm (BCA). The BCA runs on each signing node. Non-signing
clients may connect to BigchainDB; depending on permissions they may be
able to read, issue assets, transfer assets, and more; section [7] explores this
more.

Each of the distributed DBs, S and C, is an off-the-shelf big data DB. We
do not interfere with the internal workings of each DB; in this way, we get

5Tt is 2f + 1 and not 3f + 1 because digital signatures are employed. Section has details.
"This can be implemented as two databases, or as two tables in the same database. While there is no
practical difference, for the sake of clarity we describe it as two separate databases.

13

Transaction set S ("backlog”) Block chain C

C

#0 _null
ayload - T

ayload new block

Sl #A | payload

(2N H28 N%]
H || HE(|F*F
T

—_—
- ayload Sl #G | payload
SN #H | payload
%l #B | payload i

invalid tx

payload - %l #B | payload
SRl #E | payload

YA #D | payload 1

52 payload #D payload

S3 Eiis

YA #C | payload

Figure 3: Architecture of BigchainDB system. There are two big data distributed
databases: a Transaction Set S (left) to take in and assign incoming transac-
tions, and a Blockchain C (right) holding ordered transactions that are “etched
into stone”. The signing nodes running the BigchainDB Consensus Algorithm
update S, C, and the transactions (txs) between them.

to leverage the scalability properties of the DBs, in addition to features like
revision control and benefits like battle-tested code. Each DB may hold
any number of transactions. Each may be implemented in hardware in any
number of hard drives or flash drives. Each is running its own internal Paxos-
like consensus algorithm for consistency among the drives.

The first DB holds the “backlog” transactions—an unordered set of trans-
actions S. When a transaction comes in, it is assigned to a single signing
node to process. There are N signing nodes. Sy = {tx 1, tx2,...} is the set
of transactions assigned to node k.

Node k running the BigchainDB Consensus Algorithm (BCA) processes
transactions from S as follows: It moves transactions from the unordered
set Sg, into an ordered list, creates a block for the transactions, and puts the
block into the second database C. C is an ordered list of blocks where each
block has reference to a parent block and its data, that is, a blockchain.

A signing node can vote on whether it considers a block valid or invalid. To
decide, the signing node checks the validity of every transaction in the block,
and if it finds an invalid transaction, then the signing node votes that the
block is invalid. If the signing node finds no invalid transactions, then it votes
that the block is valid.

14

Each block starts out as undecided, with no votes from signing nodes. Once
there is majority of positive (valid) votes for a block, or a majority of neg-
ative (invalid) votes, the block goes from undecided to decided_valid or de-
cided_invalid, respectively, and voting on the block stops. Once it is decided,
it can be treated as “etched into stone.” This process is similar to the idea
of multiple confirmations in Bitcoin blockchain.

A block B in the blockchain has an ID, timestamp, the actual transactions,
and vote information. Section describes block, transaction, and voting
models precisely.

4.4. Behavioral Description

This section examines the flow of transactions from a client to a given server
node. Each server node has its own view of the transaction backlog S, and

the chain C.
client — | server node) | —— | servernode - I
chain chain
backlog backlog

Bl #A| payload new block
Bl #G| payload I

H[payload

payload

7 I w

A KA @

FE = || 2
@

E| payload

S2 payload
S2 payload

Figure 4: Left: BigchainDB’s backlog S and chain C start empty. Right: Clients have
inserted transactions into backlog S and assigned to nodes 1, 3, and 2.

Figure [4] and subsequent figures illustrate the high-level architecture where
each card is a physical machine. The client machines are on the leftﬂ Clients
are connected to the BigchainDB server node(s) (voting node), shown on the
right. Any client may send transactions to any BigchainDB server node.

In Figure [left, one client has a transaction with ID #A, and a payload.
BigchainDB’s backlog S is empty; and the chain C is empty except for a
genesis block with a null transaction. Other clients also have transactions
that they transmit to server nodes.

When a client submits a transaction, the receiving node assigns it to one of
the federation nodes, possibly itself, and stores it in the backlog S. Figure
right illustrates an example state. We see that node 1 is assigned three
transactions, having IDs of #A, #G, and #H. Node 2 is assigned transactions

8In some images, we truncate the illustration of the client, for brevity.

15

with IDs #B and #E. Node 3 is assigned to transactions, #D and #C. No
transactions have been put onto the chain C yet.

—— | server node) — | server node)
chain chain
backlog backlog
1 1
newblock | [EEEEAT newblock | | IREZAT payload
Sl #G| payload Ml #G | payload
S #H | payload Sl #H | payload
L i
invalid tx
s3 =7 53
5 < (G
52 payload YA #D| payload
% B[oo |

Figure 5: Left: Node 1 has moved its assigned transactions from backlog S to chain C.
Right: Node 3 has processed its assigned transactions too.

Figure [9| left shows a state where Node 1 has processed all the transactions
assigned to it. It has taken the transactions #A, #G, and #H from the
backlog S, created a block to hold them, then written the block onto the
chain C. The block points to C’s previous block.

Figure [p| right shows where Node 3 has processed all of its assigned transac-
tions too, and therefore written them as a block in chain C.

When a block is first written to C, it starts off as undecided. Each server
node may vote positively (for) or negatively (against) a block. A block should
only be voted positively if all previous blocks are not wundecided, and all
transactions in the block itself are valid. As soon as there is a majority of
positive votes for a block, or a majority of negative votes, the block goes
from undecided to decided_valid or decided_invalid, respectively.

In this example, the block created by Node 1 gets voted on, and becomes
decided_valid. Then, the block from node 3 gets voted on, and becomes
decided_invalid. In Figure |5| right, we depict the distinction as a clear back-
ground for decided_valid, versus a shaded background for decided_invalid.)

While the overall block was considered invalid, some of the transactions in
the invalid block may have actually been valid, and so BigchainDB gives
them another chance. Figure [0] illustrates how: transactions #B and #E
get re-inserted into backlog S for new consideration. Figure [6] also shows
how BigchainDB approaches storage of invalid blocks. There’s a block in
the chain C that is invalid. However, BigchainDB doesn’t remove the block;
there’s no need, as the block is already marked invalid, disk space is not a
problem, and it’s faster and simpler to keep all blocks there. Similarly, voting
doesn’t stop after a block becomes decided, because it’s faster for each node
to simply vote than the extra step to check whether voting is necessary.

16

server node

backlog

S3
5

chain

1

payload

payload

payload

i

invalid tx

2% |] poroes |
s

I3

T

Figure 6: Transactions from an invalid block (on right,

log S for re-consideration.

shaded) get re-inserted into back-

client 1 —— | server node)
chain
A payiood | @ backlog ‘-"‘”‘ null “
S 1
3l Al payload | | o biock > AT
Bl o] | — || [l
- Y 3l #G| payload
client 2 — || EEes] | @ || B g
B pojoad | | nelen
. : B o] | (5)
client 1 server node ;
chain
#D[payload B /D[payload
A aond : B[povioad | B3 0] payioad |
A pavioad | backlog W] _nil_] client 3 — B 7| payiosd | & C| payioad |
3 1
Bl #A[payload | | e biock | [g W] ooioad
- ‘ Bl /A payload pay
: Gl G| payioad | . s1 O
client 2 5 [T < [N server node chain
i
lid t N
[#8] payload] B pavioad | | 2% | FBYG6] payiond | client 4 S backlog W] ol]
BE) 7€ [payioad | @ e €[payload | r
L BAAL payioad | | e biock
H"‘ »ayload -
. o] oo 75 payiond | e
client x W< peylosd B payioad]
-: RSN
client x — T
B /0] payload | B /0] payload
B <] payload | (74 #C| payload

Figure 7: Left: More than one client may talk to a given node. Right: there are multiple

nodes. Typically, a client connects to just one node (an arbitrarily picked one).

Figure [7] emphasizes how multiple machines are configured. Figure [7] left
shows that more than one client may talk to a given node. Figure [7] right
shows that there is more than one node, though each node has a view into
the backlog S and the chain C.

17

4.5.

Models

4.5.1. Transaction Model

A transaction is an operation between the current_owner and the new_owner
over the digital content described by hash. For example, it could be a transfer
of ownership of the digital content hash. A transaction has the following

attributes:
{
"id": "<sha3 hash>",
"transaction": {
"current owner": "<pub-key>",
"new owner": "<pub-key>",
"input": "<sha3 hash>",
"operation": "<string>",
"timestamp": "<rethinkdb timestamp>",
"data": {
"hash": "<sha3 hash>",
}
1,
"signature": "<ECDSA signature of the transaction>"
}

Attribute details are:

id: SHA3 hash of the transaction and the DB primary key. By using
the hash of the transaction of the primary key we eliminate the problem
of duplicated transactions, if for some reason two nodes decide to create
the same transaction

current_owner: Public key of the current owner of the digital content
with hash hash

new_owner: Public key of the new owner of the digital content with hash
hash

input: SHA3 hash of the transaction in which the content was trans-
ferred to the user (similar to input in the blockchain). This will be
extended to allow multiple inputs per transaction.

operation: String representation of the operation being performed

(REGISTER, TRANSFER, ...) to define how the transactions should
be validated

timestamp: Time of creation of the transaction in UTC

data: JSON object describing the asset (digital content). It contains
at least the field hash, which is a SHA3 hash of the digital content.

signature: ECDSA signature of the transaction with the current_owner
private key

18

4.5.2. Block Model

A block contains a group of transactions and includes the hash of the hash
of the previous block to build the chain, as follows:

{

"id": "<sha3 hash of the list of transactions + timestamp +
nodes_pubkeys>",

"block": {
"timestamp": "<RethinkDB timestamp>",
"transactions": ["<list of transactions>"],
"node_pubkey": "<public key of the node creating the block>"
"voters": ["<list of federation nodes pulic keys>"]

1,

"signature": "<signature of the block>",

"votes": []

e id: SHA3 hash of the current block. This is also a DB primary key, to
ensure we that all blocks are unique.

e block: The actual block
— timestamp: Timestamp when the block was created
— transactions: List of transactions to be included in the block
— node_pubkey: the public key of the node that created the block

— voters: list of public keys of the federation nodes. Since the size
of the federation may change over time this will tell us how many
nodes existed in the federation when the block was created so that
in a later point in time we can check that the block received the
correct number of votes.

e signature: Signature of the block by the node that created the block

e votes: Initially an empty list. Nodes in the voters list will append to
it has they vote on the block

4.5.3. Vote Model

This is the structure that each node will append to the block votes list.

{

"node_pubkey": "<the pubkey of the voting node>",

"vote": {
"voting_for_block": "<id of the block the node is voting for
>"’
"previous_block": "<id of the block previous to this one>",
"is_block_valid": "<truelfalse>",
"invalid_reason": "<None|DOUBLE_SPEND |

TRANSACTIONS_HASH_MISMATCH|NODES_PUBKEYS_MISMATCH>",

19

"timestamp":

} s

"signature":

}

"<rethinkdb timestamp of the voting action>"

"<ECDSA signature of vote block>"

4.6. Block Validity and Blockchain Pipelining

Blocks with
enough votes
(decided_valid or
decided_invalid)

Blocks without
enough votes

(undecided)

Blocks where
parent doesn't
have enough
votes either

J
L
B, Sl #A | payload
Sl #G | payload | votes
YW #H | payload ﬂ\
1
Bs %] #B | payload
SR #E | payload |, .y«
1
B YA #D | payload
YA #C | payload |5y
1
Bs Sl # | payload
SN #K | payload
W #L | payload |,
1
B BeY #J | payload
%) #M| payload |

NN N N

/

Block is decided_valid because a majority of
nodes (3) found block to be valid. A node
finds a block to be valid if it finds all txs in the
block to be valid

Block is decided_invalid because a majority
of nodes (3) found block to be invalid. A node
finds a block to be invalid if it finds any tx in
the block to be invalid

Block is undecided because there is not yet a
majority of invalid or valid votes from nodes

Despite undecided parents, nodes still get to
vote on these blocks too. When creating a
block, nodes are only allowed to add txs that
don't depend on txs in undecided blocks.
Therefore, another voting condition applies: a
node will find a block invalid if it finds any tx
depending on txs in undecided blocks. This
pipelining technique is a speed boost,
because we get to add blocks even though
parents are undecided.

Figure 8: Pipelining in the BigchainDB blockchain C. Votes accumulate on each block.
Blocks can continue to accumulate on the blockchain, even though their par-
ents, grandparents, etc. may be undecided. The key is that when adding a
new block, we can include transactions that do not depend on transactions in
undecided blocks.

Figure [§| shows an example of a blockchain C. Block B is the genesis block
with a null transaction.

Blocks are written in the order decided by the DB’s built-in consensus al-
gorithm. This means that when a signing node inserts a Block into the
blockchain, it cannot provide a vote at the same time. Only after the write
is fully committed does the order become clear.

Nodes vote on blocks after order becomes clealﬂ When a block is written,
it starts off as undecided. As soon as there is majority of positive votes for

9For example: the order of events in RethinkDB is guarantueed by the Raft consensus and does not
depend on timing.

20

a block, or a majority of negative votes, the block goes from undecided to
decided_valid or decided_invalid, respectively.

Note that, unlike a typical block chain, the Block Model doesn’t have a top-
level link to the previous block. Instead, it has a list of votes, and each vote
has a "previous_block": "<id of the block previous to this one>".
If for some reason, the nodes disagree on the parent (eg. malicious nodes)
on can just mark the block as invalid, return the transactions to the backlog
and try again. Chainification happens at wvoting time, not at the time the
block was first written to the DB.

Block B has received three votes of five possible. In this example, all three
votes are positive. Since the majority of nodes voted that the block is valid,
the block is considered decided_valid.

Block Bg3 has received five votes of five possible. There was a positive vote,
then negative, then positive, then two more negative votes. Since the ma-
jority of nodes voted that the block is invalid, the block is considered de-
cided_invalid. This block can stay in the chain because all the votes show
that it is invalid. It will be ignored when validating future transactions. By
keeping the block in place, we can quickly progress the chain to child blocks.

Block By is undecided because it does not yet have a majority of invalid or
valid votes from nodes. Voting on By continues.

It is crucial that despite B4 being wundecided, it still has a child block Bs.
This is possible because the DB’s built-in consensus algorithm determines
the order of the blocks, and we have logically separated writing blocks from
voting. “Forking” is not a risk as it is not even in the vocabulary of the DB,
let alone supported in code. The reason is that every node is working on
the same blockchain (instead of every node working on their own replica of
the blockchain which may be different from the other nodes) and every node
communicates through the database which is basically and open broadcast
channel (instead of on communicating individually with each node). Because
of this, any node can try to add a block, but only one becomes the child
to By; the rest follow according to the built-in consensus algorithm. It is a
single railroad track where the location of the next plank is based on previous
planks. We do not have to stop at adding a single plank after an undecided
block—we can keep aggressively laying track, such as block Bg in the figure.

When there are undecided parent blocks, we need to do one more thing to
prevent double-spending: any transaction put into a new block must not
depend on transactions in an undecided block. For example, inputs of a new
transaction must not be in inputs of any undecided blocks. This is enforced
in two ways: when creating new blocks on undecided blocks, such double-
spend transactions are not allowed, and when voting, any block containing
such transactions is voted invalid.

21

We call this “blockchain pipelining” because this behavior is reminiscent of
pipelining in microprocessors. There, the microprocessor starts executing
several possible instructions at once. Once the microprocessor has worked
out the proper order for the instructions, it collates the results as output
and ignores useless results. As with microprocessor pipelining, blockchain
pipelining gives significant speed benefits.

4.7. BigchainDB Consensus Algorithm (BCA)

The BigChainDB Consensus Algorithm (BCA) is a state machine that runs
on each “signing” node (server). This section outlines the BCA using Python-
like pseudocode

4.7.1. Main Loop

Before starting the mainLoop() on each signing node, the databases S and C
must be created and initialized. One of the initialization steps is to write a
genesis block to C.

Listing (1| has high-level pseudocode for the BCA. It shows the mainLoop()
running on signing node k. Every signing node runs the same mainLoop().

Line 4 emphasizes that there is equal access by all the nodes to the databases
S and C. The BCA operates by moving data from transaction set S to
blockchain C, and occasionally in the other direction as well.

Listing 1: BigchainDB Consensus Algorithm. This algorithm runs on every
signing node.
1 def mainLoop(): # Pseudocode for signing node k
2 # Assume S and C exist and are initialized,
and C contains a genesis block.

| global S, C # tx set and blockchain globally visible
5 while True:

6 S = assignTransactions (S, k)
7 Sk, C = addBlock(Sk, C, k)
8 C = voteOnBlocks(C, k)

Line 5 is the start of the main loop. All remaining pseudocode is part of this
loop, which runs continuously until the node is shut down.

Line 6 accepts transactions to into S and assigns them to nodes, line 7 moves
unordered transactions from S into ordered, grouped-by-block transactions
in C, and line 8 is where the node votes on undecided blocks.

10The actual code will be open source, so if you're curious about implementation details, you can read
that.

22

Listing 2: Parallel version of BigchainDB Consensus Algorithm.

def mainLoopParallel():
start => 1 assignTransactionLoop () processes
start => 1 addBlockLoop() processes
start => 1 voteLoop() processes

def assignTransactionLoop():
while True:
S = assignTransactions (S, k)

def addBlockLoop():
while True:
Sk, C = addBlock(Sk, C, k)

def voteLoop():
while True:
C = voteOnBlocks(C, k)

The pseudocode of Listing[I]is written as if there is a single process. But each
major step can actually be a separate, independent process. In fact, there can
be multiple processes doing each step; this helps performance tremendously.
Listing 2| shows the pseudocode.

4.7.2. Assigning Transactions

Listing 3| algorithms are for assigning transactions, as follows:

Listing |3| assignTransactions() is the main routine that groups the two
major steps: accepting and assigning incoming transactions (line 2), and
reassigning old transactions (line 3).

Listing[3|assignNewTransactions() accepts incoming transactions from clients
of the BigchainDB and assigns transactions to nodes. We assign transactions
to a node rather than allowing nodes to grab transactions, because assign-
ment greatly reduces double-spend detections in the block chain building
side, and therefore helps throughput. We considered assigning nodes deter-
ministically, for example based on the hash of the transaction. However,
that would be problematic if a malicious node repeatedly inserted a bad
transaction into C, then when it got kicked back to S, the malicious node
got the same transaction again. Instead, we assign the node randomly with
equal probability to each node, except the current node k in order to avoid
a duplicate vote.

In the algorithm, line 7 accepts transactions and loops through them; line 8
chooses which node, with uniform probability; line 9 records the assign time
(see the next algorithm for why); and line 10 actually assigns the transaction
to the chosen node.

23

15
16
17
18

19

NN N
N =

Listing 3: Routines for accepting and assigning transactions.

def assignTransactions (S, k):
S = assignNewTransactions (S, k)
S = reassignO0ldTransactions (S, k)
return S

def assignNewTransactions (S, k):
for each new tx, t from outside:
i ~UO0, 1, ..., k-1, k+1, ..., N-1}) # Stochastic. Any
node but k avoids duplicate vote.
t.assign_time = time ()
Si = 8i U t
return S

def reassignO0ldTransactions (S, k):
for Sj in {S1, S2, ...}:
for each tx, t, in Sj:
if (time() - t.assign_time) > old_age_thr:
i ~ findex(t) # deterministic function of t

t.assign_time = time ()
Si = Si U t
Sj = 8j -t

return S

Listing [3| reassign0ldTransactions() re-assigns transactions that are too
old. Transactions can get old if a node goes down, is running slowly, is acting
maliciously, or is not performing its duties more generally. This routine
ensures transactions assigned to a node are not dropped, by re-assigning old
transactions to a different node. It loops through all assigned transactions
(lines 14-15), and if the transaction’s previous assignment is too old (line 16)
it chooses a new node (line 17), sets a new assign time (line 18), and moves
the transaction assignment from the old node (node j) to the new node (node
i). For this routine to work, it also needs the unassigned-transactions to have
an assign time, which is done in assignNewTransactions() (line 9)).

In line 17, the node assignment is not random, but instead deterministic as
a function of the transaction. This is so nodes do not inadvertently fight
over which node gets the transaction t. An example deterministic function
findex(t) is mod(hash(t))—hash the transaction then modify it by the number
of nodes.

4.7.3. Adding and Voting on Blocks

Listing |4 addBlock() creates and adds a (non-genesis) block to C, and ends
with a set of transactions to postpone

24

Listing 4: Routine for adding normal blocks.

def addBlock(Sk, C, k):
Tpostpone = {}

Bnew = @
Btaiz = most recent block in C
Tnew = []

for t in Sk:
if dependsOnUndecidedBlock (t, Biai1):
Tpostpone = Tpostpone Ut
elif transactionValid (t, Biai1):
Tnew - append (t)
id = sha3 hash of {Tpew, other data wrt Sec. 5.5}
votes = []
Buew = Block(id, Tpew, votes, other data wrt Sec. 5.5)
add Byew to C # C s consensus algorithm will determine

order
Sk = O
Sk = Sk U Tpostpone

return Sk, C

Lines 2 — 3 initialize the routine’s main variables — the block to add Bpey,
and the transactions to postpone adding until later Tpostpone-

Lines 4 — 17 creates a block and adds it to C, in an order determined by C’s
consensus algorithm. Line 4 updates its pointer Biai1 to the most recent
block in C. It is important to grab Bya,j; here rather than computing it on-
the-fly, in case new blocks are added while the rest of the routine is running.
Line 5 initializes the ordered list of transactions to be added to the block,
and lines 7 — 10 add them one at a time. If a transaction t depends on an
undecided block (risking double-spend) it will be postponed to another block
by being added to Tpostpone (lines 7 — 8). Otherwise, if it is considered valid,
then it is added to Tpey (lines 9 — 10). Otherwise, it will be discarded. Lines
11 — 14 create the block and add it to C.

Listing 4] lines 15 — 16 occur once the block has been successfully added.
With new transactions now in C, those transactions can be removed from S,
as line 15 does by clearing S;. Line 16 reconciles by adding back any post-
poned transactions, for example any transactions that risked being double-
spends due to being added after an undecided block.

25

Listing 5: Routine for voting on blocks.

def voteOnBlocks(C, k):

B = oldest block in C that node k hasnt voted on

while B:
vote = transactionsValid (B)
B.V[k] = vote
if B is decided and invalid: copy B s txs back into S
B = (child block of B) or <&

return C

Listing Routine for voting on blocks voteOnBlocks() is the routine for
node k to vote on blocks that it hasn’t yet voted on.

Note that a node actually votes on blocks that may have already been de-
cided, because it’s faster to vote than to first query whether the block is
decided. Lines 3 — 8 iterate from the oldest block that node k hasn’t voted
on (found in line 2) to the newest block (when temporary variable goes to &
in line 7). For each block, line 4 computes a Boolean of whether all trans-
actions in the block B are valid, and line 5 stores that in B’s votes variable
B.V, signed by node k. Line 6 gives potentially valid transactions another
chance.

4.7.4. Transaction Validity

Listing 6: Routines for transaction validity.

def transactionsValid (T, Bi):
are all txs valid?
for t in T:
if not transactionValid(t, Bi):
return False
return True

def tramsactionValid(t, Bi):

Is tx valid in all blocks up to and including Bi?

(Ignore Bi+1l, Bi+2, ...)

if t is ill-formed, commits double-spend, etc.
return False

if dependsOnUndecidedBlock(t, Bi)
return False

return True

def dependsOnUndecidedBlock(t, Bi):
returns True if any of t s inputs are in a block

that is not voted enough (enough x’s or /’s)
in [BO, B1, ... , Bi]. Ignores [Bi+1, Bi+2, ...]

Listing [6] holds the routines for measuring validity of transactions.

26

Listing@transactionsValid() is the top-level routine to simply loop through
all the transactions supplied in the transaction list T (lines 3 — 6), and if any
transaction is found to be invalid (line 4) the routine returns False.

Listing[6] transactionValid() measures whether a transaction is valid, based
on traditional blockchain validity measures (ill-formed, double-spend, etc.)
in lines 11 — 12 and also based on whether it depends on an undecided block
(lines 13 — 14).

Listing [6| dependsOnUndecidedBlock() clarifies what it means to depend on
an undecided block.

4.8. Consensus Algorithm Checklist

As we were designing the BCA, we encountered some pitfalls and concerns
that we subsequently resolved.

Client transaction order. We must ensure that transactions sent from
the same client, or at least transactions received in a particular order, are
processed in that order—or at least with a bias to that order. A typical
scenario is where a client’s first transaction is to fill a value at an address,
and second transaction is to spend from it. For starters, this should not
be rejected. Better yet, it should go through the system efficiently, which
means that there should (at the very least) be a bias to process the first
client transaction before the second client transaction.

Block construction order. By the time we create memory space for a block
at address «, all its transactions must be in the block, so that blocks added
after o can check to not double-spend those transactions. This would fail if
node 1 creates a block B; at ai, then node 2 creates a block By that follows
B, then node 2 adds transactions to By, then node 1 adds transactions to
B which invalidate some of the transactions in Bs.

Hashing votes. Is there transaction malleability because votes are not
hashed? This may look like a problem, because a block’s hash can be prop-
agated to its child block before all its votes are in. A preliminary answer
would be to have a second chain of hashes that actually includes the votes.
But the solution can be simpler than that: a single hash (without votes) is
fine because the votes are digitally signed by the signing nodes, and therefore
not malleable.

Dropping transactions. If a node goes down, what happens to the trans-
actions assigned to it? Do those transactions get dropped? In our initial
design, the answer was mostly no, because all transactions are stored in S
until they have been committed to a block. However, if a node went down

27

or, more generally misbehaved, transactions assigned to that node might not
be handled. To address this, we added a way to re-assign transactions if the
previous node assignment got stale: algorithm reassign0ldTransactions()
in Listing

Denial of service. Are there any transactions that can be repeatedly called
by aggressor clients or a malicious server node, which tie up the network?
To our knowledge, this is not an issue any more than with a traditional web
service.

Database built-in communication vulnerability. The nodes commu-
nicate using the big data DB’s own built-in consensus algorithm like Paxos
to tolerate benign failures. Is this a vulnerability? The answer is that a
majority of the network would need to be affected for it to have any major
consequences.

Double spends. Are there any ways to double-spend? This is a useful ques-
tion to keep asking at all stages of development. In this regard BigchainDB
does exactly the same as the bitcoin network. All past transactions are
checked to make sure that input was not already spent.

Malicious behavior. Questions: How does BigchainDB detect that a node
has bad (Byzantine) behavior? Does it discourage bad behavior? How?
Answers: Overall, it’s a simpler problem because of the federation model.
Bad behavior can be detected when a node’s vote on a block is different than
the majority. There are many possible ways to discourage bad behavior, from
manual punishment decided by the federation, to needing to post a security
deposit (bond) and automatically losing it upon bad behavior.

Admin becoming god. Does the system administrator have any powers
that allow them to play “god”, and thus constitute a single point of failure?
We were careful to limit the power of the system administrator to even less
than a voting node. So to our knowledge, the system administrator cannot
play god because all write transactions (including updating software) need
to be voted on by the federation.

Offline nodes. Q: What happens if a voting node goes offline? If many go
offline? A: One or a few offline is fine, as quorum (the number of nodes needed
to approve a transaction) is still met. Typically, quorum is a majority of
nodes. Split votes or many offline nodes could leave a block in an undecided
state. This implies that transactions that depend on the undecided block
(i.e. transactions who’s input is an output of a transaction that is in an
undecided block) will remain in the backlog until enough voting nodes are
back online to resolve the split vote or undecided state. Alternative measures
could be to leave a block in an undecided state for a limited amount of time.

28

Once the time threshold is reached, the block is automatically rejected and
the transactions return to the backlog. Also, pending split votes may be
resolved as being rejected using a more pessimistic voting strategy.

Hash at block vs transaction level. : Why do we chain together blocks,
rather than chaining together transactions, which is simpler? A: There are
two reasons. First, with distributed data stores, there is no guarantees in the
order in which transactions will be committed to the DB. Without knowing
what is previous transactions to be committed to the DB, we cannot include
its hash in the current transaction to build the chain. To solve this problem
we decided to use blocks and create the chain with the blocks. Second, it is
more efficient to group transaction into batches for the surrounding logic —
the cost gets amortized over the whole block. For example, only one hash
for every block rather than every transaction.

4.9. Transaction Validity, Incentivization, and Native Assets

Each BigchainDB transaction has inputs and outputs. As with Bitcoin, the
key measure of transaction validity is whether the inputs have sufficient funds
to cover the outputs: “you can only spend what you have.” Validity is mea-
sured by voting nodes.

Recall that BigchainDB consensus is federation-based. A node gets to vote
on a transaction based on whether it has been given a voting node role.
Contrast this to a POW model, where the probability of a node voting is
proportional its hash power, which assuming all miners have state-of-the-art
hardware is equivalent to electricity spent; or to POS where probability of a
node voting is proportional to how much money it has.

Traditionally, blockchains have held two types of assets. “Native assets”
like Bitcoins or Ether are built into the core protocol. The consensus uses
these assets to measure transaction validity and to reward voting by native-
asset transaction fees and mining rewards. Second are non-native “overlay
assets” in overlay protocols sitting above the core protocol (e.g. SPOOL
[10]). However, this traditional approach to native assets and reward has
weaknesses:

e Overlay Asset Double-Spend. Traditional blockchains’ consensus
models do not account for overlay assets. There is nothing at the core
protocol level to prevent a double-spend of an overlay asset.

e Native Asset Friction to Network Participation. Traditional
blockchain voting nodes need to get paid in the native asset, so any
new participants in the network must acquire the native asset, typically
on an exchange, before being able to conduct a transaction. Acquiring
the native asset is especially difficult on newer blockchains with native

29

assets that are not yet available on many exchanges. This is a high bar-
rier to entry when compared to traditional web services, where any new
participant can conduct a transaction by paying in a standard currency
like U.S. dollars with a standard payment method like a credit card.

BigchainDB overcomes these issues as follows (and as shown in Table [2)):

e Native consensus voting on every asset. Every transaction keeps
track of which asset it is operating on, chaining back to the transaction
that issued the asset. Every asset is “native” in the sense that it’s
used to measure transaction validity. This overcomes the issue of “asset
overlay double-spend.”

e Low friction to network participation. Like a traditional web ser-
vice, the network operator sets the terms on how to join the network
and conduct transactions—but in this case the network operator is the
collective will of the voting nodes. The voting nodes also determine how
users pay for transactions.

Table 2: Native Assets Validity & Incentivization

BigchainDB

Traditional Blockchain

Native Asset

Overlay Assets

Native Asset

Overlay Assets

Asset Types

Y (one)

Y (multiple)

Y (multiple)

N

Validated by Blockchain

Consensus

Y

N

Y

N/A

External Fees
(e.g. Transactions, Storage)

Native Asset
(e.g. Mining Reward)

Obtain Native Assets
(e.g. Via an Exchange)

Incentivization Via

Fiat Currency

P t for T ti "
ayment lot Lransactions (e.g. Traditional channels)

4.10. Incentivization & Security

In POW and POS blockchains, the network, incentive model, and security
of the network are inextricably linked. Security is intrinsic to the system.
But as discussed in section [2] and appendix B both POW and POS have
scalability challenges. Though it’s a double-edged sword: when incentives
are intrinsic to the system too, there is motivation to game the system. An
example is the emergence of mining pools to benefit the most from Bitcoin’s
built-in incentive (mining rewards).

In a federation like BigchainDB, the security of each node and aggregate
security over the entire network are extrinsic. This means the rules for con-
fidentiality, availability, and integrity are outside the core network design
[49]. For instance, if all nodes have weak rules for security, the network will

30

be breached. By contrast, if a minimum fraction of the network nodes have
reasonable security standards, the network as a whole can withstand attacks.
Extrinsic incentives can have benefits: in a private deployment, the network
participants are motivated simply by the benefits of being part of the network
(e.g. lower costs, lower fraud, new functionality). Extrinsic incentives can
work in a public deployment too, for similar reasons: the voting nodes may
have their own reasons for an open, public database to survive, for example a
mandate as a nonprofit, and this makes the interests aligned (see also section

7).

5. BigchainDB Implementation Details

5.1. Choice of Distributed DB

The BigchainDB design is flexible enough to have been built on top of a wide
variety of existing distributed DBs. Of course, we had to choose a first one to
build on. To select which, we first did benchmarking, then added additional
criteria.

There are > 100 DBs to choose from, listed for example at [50] and [51].
This was our shortlist: Cassandra [52], HBase [53], Redis [54], Riak [55],
MongoDB [56], RethinkDB [57], and ElasticSearch [58]. Each of these DBs
uses Paxos or a Paxos descendant such as Raft [37].

First, we did preliminary performance investigation of the DBs in our short-
list: Each had 15 — 105 writes/s per thread, 290 — 1000 serial reads/s per
thread, and 80 — 400 reads/s per thread.

While there was some variation in performance among the DBs, the key
thing to notice is that performance is per thread: performance improves as
the number of threads increases. This is different than traditional blockchain
technologies, where performance stays flat or worsens.

Given that all DBs tested had good scalability properties, we realized that
other criteria were even more important. In particular:

1. Consistency. Distributed DBs must make a trade-off between per-
formance and consistency (in the CAP theorem [59] sense, not ACID
sense [60]). For a blockchain, consistency means trustworthy ordering
of transactions, so we prefer DBs with strong consistency guarantees.

2. Automatic Change Notifications. One way for a node to find out
if a change has happened in a DB is to ask it on a regular basis (i.e.
polling), but that’s not as efficient as having the DB automatically
notify the node of changes. We wanted a DB with automatic change
notifications as a standard feature.

31

Automatic change notifications bring another benefit: they improve
tamper-resistance (beyond what a chain of hashes offers). If a hacker
somehow manages to delete or update a record in the data store, the
hashes change (like any blockchain). In addition, a datastore with au-
tomatic change notifications would notify all the nodes, which can then
immediately revert the change and restore the hash integrity.

Of the options considered, we found that RethinkDB met our needs best. It
has strong consistency guarantees [61] and it offers automatic change notifi-
cations (“changefeeds”) as a standard feature [62]. Therefore, we built the
first version of BigchainDB on top of RethinkDB.

RethinkDB is a JSON (NoSQL) database with a flexible query language [63].
It is optimized for scalable realtime feeds, which is useful for collaborative
apps, streaming analytics, multiplayer games, realtime marketplaces, and
connected devices / IO”IE It is built in C++, is open source, and has a
vibrant development community [64]. If one wants full ACID support or
strong schema enforcement, then a SQL database is a better choice; if one
prefers availability over consistency then Riak [55] is a better choice [63].

In the future, we envision a variety of distributed databases being “blockchain-
ified” according to the approach of this paper. Every relational database,
document store and graph store on the planet might someday have a blockchain
version.

5.2. BigchainDB Datastore Architecture

Figure [9] shows the architecture of the BigchainDB datastore, with three
nodes as example. We run each node as an AWSZZI t2.medium node (or
otherwise). We use the RethinkDB storage backend, with a sharded cluster,
and master/master-replication.

There are three key interactions with a node:

e big API controls access to the datastore. It is through the big API
where there is access for admin, applications, and any other clients.

e big trigger verifies changes in the backlog, i.e. the UPDATE / DELETE
calls.

e big processor creates blocks of verified data from the backlog, and
writes blocks to the bigchain.

H1oT = Internet of Things
2AWS = Amazon Web Services

32

Admin Ul App Clients

big_API big_trigger big_processor
Controls the access to verifies changes in backlog creates blocks of verified data from
the datastore UPDATE / DELETE backlog and writes blocks to BigchainDB

Node: t2.medium
@ Datastore: RethinkDB Storage Backend
w shared cluster, master/master-replication

Figure 9: BigchainDB datastore architecture.

5.3. BigchainDB Capacity

Each t2.medium provides 48 TB of storage, so the total capacity of N nodes
is N times 48 TB; with 32 nodes, the total capacity is 1536 TB, i.e. more
than a Petabyte. For quick reference, Figure shows how total capacity
depends on the number of nodes.

1.6

1.4

1.2

1.0

0.8

Capacity (PB)

0.6

0 5 10 15 20 25 30
Number of Nodes

Figure 10: BigchainDB Capacity versus Number of Nodes. Each node adds another 48
TB to the total storage capacity.

33

5.4. Cryptography

This section describes choices of cryptographic algorithms.

5.4.1. Hashes

We hash using the SHA3-256 algorithm. We store the hex encoded hash in
the BigchainDB. Here is a python implementation example, using pyshaﬂ

import hashlib
monkey patch hashlib with sha3 functions
import sha3

[SLE N

data = "message"
tx_hash = hashlib.sha3_256(data).hexdigest ()
5.4.2. Keys

For signing and verifying signatures we are using the Elliptic Curve Digital
Signature Algorithm (ECDSA) with 256bit keys and the secp256kl curve
parameters, the same as used by Bitcoin and Ethereum.

The public-key or verification key are converted to string and hex encoded
before storing them to BigchainDB.

Here is a python implementation example, using python—ecdsalﬂ

import binascii

from ecdsa import SigningKey

generate signing key in hex encoded form

sk = SigningKey.generate ()

sk_hex = binascii.hexlify(sk.to_string())

6 # get signing key from hex

7 sk = SigningKey.from_string(binascii.unhexlify(sk_hex))

S N

5.5. Serialization

We need to clearly define how to serialize a JSON object (RFC7159) to
calculate the hash. The serialization should produce the same byte output
independently of the architecture running the software. If there are differ-
ences in the serialization hash validations will fail although the transaction
is correct.

Here is an example:

https://bitbucket.org/tiran/pykeccak
Yhttps://github.com/warner/python-ecdsal

34

https://bitbucket.org/tiran/pykeccak
https://github.com/warner/python-ecdsa

¥)

>>> a = r.expr({’a’: 1}).to_json() .run(b.connection)
u’{"a":l}’

>>> b = json.dumps({’a’: 13})
>{"a": 1}

>>> a ==

False

We should provide the serialization and deserialization so that the following
is always true. For example:

>>> deserialize(serialize(data)) == data
True

5.5.1. Standard serialization for BigchainDB

We are currently using the python JSON module, because it complies with
the RFC. We can specify the encoding, separators used and enforce it to
order by the keys to make sure that we obtain maximum interoperability.

import json
json.dumps (data, skipkeys=False, ensure_ascii=False, encoding=
"utf-8", separators=(’,’, ’:’), sort_keys=True)

The parameters mean:

e skipkeys: With skipkeys False if the provided keys are not a string
the serialization will fail. This way we enforce all keys to be strings

e ensure_ascii: The RFC recommends utf-8 for maximum interoper-
ability. By setting ensure_ascii to False we allow unicode characters
and force the encoding to utf — 8.

e separators: We need to define a standard separator to use in the
serialization. We did not do this different implementations could use
different separators for serialization resulting in a still valid transaction
but with a different hash e. g. an extra whitespace introduced in the
serialization would still create a valid json object but the hash would
be different

5.5.2. Example

Every time we need to perform some operation on the data like calculating
the hash or signing/verifying the transaction, we need to use the previous
criteria to serialize the data and then use the byte representation of the
serialized data (if we treat the data as bytes we eliminate possible encoding
errors e.g. unicode characters):

35

calculate the hash of a transaction

the transaction is a dictiomnary

tx_serialized = bytes(serialize(tx))

tx_hash = hashlib.sha3_256(tx_serialized) .hexdigest ()
signing a transaction

tx_serialized = bytes(serialize(tx))

signature = sk.sign(tx_serialized)

verify signature

tx_serialized = bytes(serialize(tx))
vk.verify(signature, tx_serialized)

6. BigchainDB Transaction Latency

A key question is how long it takes for a transaction to get “etched in stone”
(i.e. into a block that is decided valid). To begin answering that question,
we can trace the life of a transaction t, from the time a client sends it to the
time the client gets a confirmation that t is in a decided_valid block. Figure
and Figure [12]illustrate the life of a transaction.

The time interval required for each step will vary. It can depend on how
busy a node is, how busy the cluster is, network latency, and other factors.
Nevertheless, we can still identify each step in the life of a transaction, to
determine the main sources of latency.

Generally speaking, the client will send their transaction t over the Inter-
net to a BigchainDB node. The transmission time t¢;, depends on how far
the client is from the BigchainDB node, but it will typically range from
tens to hundreds of milliseconds (ms). Once t is in a decided_valid block, a
BigchainDB node can send a success notification to the client. The trans-
mission time ¢,y Will be approximately the same as t;,. Figure|l3|illustrates
tin and tout-

We can write the total latency as:
ttotal = tin + tinternal 1 fout (1)

where tinterna1 1S internal latency: the latency contributed by the Bigchain
DB cluster itself. t;, and tou depend on the client, but tigterna1 Will be
independent of the client (as a first approximation). The remainder of this
section is focused on developing an estimate for finternal-

Let’s start with some notation. There are many sources of latency within
the BigchainDB cluster, but a key one is the time it takes information to
travel from one node to another node. Let’s call the typical one-hop node-
to-node latency tnop. The duration of #p.p depends a lot on how the nodes
are distributed. If the nodes are all in one data center, then t,,, might be

36

Client Initial Node

t |—| Superficial

validation

1 | lvalid

invalid

t's Assigned Node

:

g
L

Full
validation fully valid

4——‘ t
boooso i

valid but depends on a !
tx in an undecided block 0 0

B(t) full
or timeout

N

to C on all signing nodes

Figure 11: Life of a Transaction, Part 1/2

less than 1 ms. If the nodes are distributed globally, then #y,p, might be 150
ms.

Another key source of latency is query latency ¢q. If a node queries the un-
derlying (distributed) database, it might happen that the node itself already
has all the information it needs to determine the result. That is probably
unusual. More typically, the required information is on one or more other
nodes. Getting that information requires at least two internal network hops:
one to send the query out, and one to get information back. For that case,
we can write:

f < (2 thop) + ap @)
where tq, is the query processing time.

If all nodes in the cluster are in one data center, then tp.p and tq, might be
similar in duration, so we may not be able to neglect tq, relative to tnop.

Signing Node k

B(t) is added the tail of k's queue of
blocks to vote on. To vote on a block, k
must fully validate all of its txs.

B(t) B(t)

All signing nodes are doing the same, in parallel.

Figure 12: Life of a Transaction, Part 2/2

BigchainDB Cluster

Client o,

Figure 13: Transmission latencies between the client and the BigchainDB cluster.

Let’s return to figuring out a back-of-the-envelope estimate for tipterna1. In
general, it could be quite large, because a transaction might bounce back
and forth between the backlog S and the bigchain C before it finally ends
up in a decided_verified block. What we can do is determine an approximate
minimum tinternal -

When t arrives at a BigchainDB node, the node does a superficial validation
of t (i.e. not checking if it depends on a transaction in an undecided block).
That requires at least one query (e.g. to check if t does a double-spend), so
the time required is at least tq. (If t is invalid, then the client can be notified
and that’s the end of the story for t.)

If t is valid, then the BigchainDB node assigns t to a randomly-choosen node.
It then writes t to the backlog (S). The underlying distributed database will

38

notify all the other nodes about the change to S (i.e. that there is a new
transaction), along with the contents of t. It takes at least thop time for t to
propagate over the internal BigchainDB network.

t then enters the tail of a queue on the assigned node, where it waits for
the assigned node to check it for validity (including whether t depends on a
transaction in an undecided block). In general, there may be several transac-
tions ahead of t in that queue. The assigned node must check each of those
transactions first; each check requires at least one query, so at least ¢4 time
is needed to check each transaction ahead of t. In the best case, there are
no transactions ahead of t in the assigned node’s queue, so the waiting time
is zero.

Once t gets its turn at being considered, the assigned node must check to see
if t is valid (including whether t depends on a transaction in an undecided
block). That takes at least tq time. If t does depend on a transaction in
an undecided block, then it must go back to waiting for consideration for
inclusion in a block (i.e. back to the tail of the assigned node’s queue).

Suppose t is okayed for inclusion in a block. Let’s call that block B(t). t
must wait for B(t) to accumulate 1000 transactions (or whatever value the
BigchainDB operator sets), or for a timeout to occur (e.g. 5 seconds since
the last transaction was added to the block). The timeout is to ensure that
a block doesn’t wait forever for new transactions. When there are lots of
new transactions coming in, the time t spends waiting for B(t) to fill up will
typically be negligible compared to tpep, SO We can ignore it.

The assigned node then writes B(t) to C. It takes time for B(t) to propagate
to all other nodes in the cluster: at least tpqp.

Each signing node will be notified about the new block B(t), including its
contents. Signing node k will add the newly-arrived block to the tail of its
queue of blocks to vote on. k’s local copy of B(t) will wait for k to vote on
all other blocks ahead of B(t) in k’s queue. In the best case, there are no
nodes ahead of B(t) in k’s queue, so the waiting time is zero.

How long does it take for a node to vote on one block? If there are 1000
transactions in the block, then the node may have to check the validity of
all 1000 transactions. (It doesn’t always have to check all the transactions:
if it finds an invalid one, it can stop before checking any more.) Once the
validity checks are done, the node must compose a vote (data structure) and
calculate its digital signature, but the time to do that is negligible compared
to the time needed to check validity.

The node doesn’t have to check the validity of each transaction one at a time.
It can check many transactions in parallel at the same time, depending on
how many processes are available to do validity-checking. In principle, there
may be sufficient processors available to check all transactions for validity
in parallel at once. Therefore, in the best case, the time to vote on one

39

block will be approximately the same as the time to check one transaction
for validity: tg.

Once B(t) gets to the head of k’s queue, B(t) might already be decided, but
k votes on it regardless (i.e. k doesn’t spend time checking if B(t) is already
decided). As explained above, voting on B(t) takes at least ¢y time.

Once B(t) has gotten votes from a majority of the signing nodes, it becomes
either decided_valid or decided_invalid. (The list of nodes which can vote on
B(t) is set when B(t) is created, and doesn’t change if nodes are added or
removed from the cluster.) The deciding vote takes time tyop to propagate
to all the other nodes in the cluster.

If B(t) is decided_invalid then the transactions inside B(t) (including t) get
sent back to S for reconsideration in a future block.

If B(t) is decided_valid, then t is “etched in stone” and a success notification
message can be sent to the client.

We can now estimate a minumum %ipterna1 by adding up all the times outlined
in the precedinging paragraphs:

tinternal S 3- tq + 3- thop (3)

Then, using eq. :

tinternal S 9- thop + 3 tq_p (4)

If the cluster nodes are widely-distributed, then t,4, is much larger than tq,
and:

tinternal S 9- thop (5)

As a rule of thumb for widely-distributed clusters, the minimum internal la-
tency is about an order of magnitude larger than the one-hop node-to-node
latency. (Remember that tipterna1 ignores client-to-BigchainDB network la-
tency.)

Table 3: Latency based on geography

One-hop node-to-node latency in

How nodes are distributed the cluster (aop)

In one data center =~ 0.25 ms < 2.25 m
In one region (e.g. America) ~ 70 ms < 630 ms
Spread globally ~ 150 ms < 1350 ms

40

There are a few general cases, depending on how the BigchainDB nodes are
distributed. Table [3] summarizes.

The latency estimates in Table [3| are order-of-magnitude approximations.
They can be interpreted as guidelines for what to expect.

7. Private vs. Public BigchainDB, and Authentication

7.1. Introduction

The way that BigchainDB is designed, permissioning sits at a layer above
the core of the design. However, we have already seen many questions about
“private vs. public” versions of BigchainDB, privacy, and authentication.
In our view, a rich permissioning framework is the technology foundation.
This section explores permissions, roles, private BigchainDBs, and privacy.
It then has an extended section on a public BigchainDB, which we believe is
tremendously important. It finally discusses authentication and the role of
certificate-granting authorities.

7.2. Permissions, ldentities, and Roles

Permissions are rules about what a user can do with a piece of data. Per-
missions are used in all kinds of computing environments, from shared file
systems like Dropbox and Google Drive, to local file systems in Windows,
iOS, and Linux, to distributed DBs. We should expect blockchain DBs to
have rich permissioning systems.

Permissioning ideas from these other systems can inform our design. In
Unix, each file or directory has three identity roles (owning user, owning
group, others) and three types of permissions for each role (read, write, ex-
ecute), for a total of nine permission values. For example, the permission
” means that the owning user can read, write, and exe-
cute (rwx); the owning group can read but not write or execute (r--), and
others have no permissions (---).

values “rwxr--r—-—-

A BigchainDB database instance is characterized by which identities have
which permissions. Table [4] and Table [5] gives examples of permissions on a
private and public BigchainDB, respectively. This is loosely comparable to
a corporation’s internal intranet and the public Internet. We will elaborate
on these shortly.

'5This estimate doesn’t include the query-processing term (3 - tq), which might be about the same
magnitude (i.e. milliseconds).

16 Action is permitted only during the network initiatization process. Once a network is live, the sys
admin can no longer act unilaterally.

41

Table 4: Example Permissioning / Roles in an Enterprise BigchainDB Instance

Action R,quulres \r'ot1rng ‘ §‘VS, Issuer Trader | Broker Authenticator | Auditor Cvore s
vote Node Admin Overlay

Vote on Admin &

Asset Actions Y Core
Admin actions

Upda.te. Role or v v v Core

Permissions

Add/Remove 16

Voting Node Y Y l Core

Update software Y Y Y Core
Asset actions

Issue Asset Y Y Core

Transfer Asset Y O O P Core

Receive Asset Y Y Y Core

Grant Read Ac- v 0 o P p Core

cess on Asset

Consign Asset Y (0) O Overlay

Receive — Asset Y Y Y Y Overlay

Consignment

Add‘ Asset Infor- v 0 o P Overlay

mation

Add_Authentica- Y 0 o) P Overlay

tion Information

Create Certificate

of Authenticity N 0 o P Overlay
Read actions

Read Asset Infor- N Y Y 0 Y p p p Overlay

mation

Read Certificate

of Authenticity N Y Y (0) Y P P P Overlay

An identity, which signifies the holder of a unique private key, can be granted
a permission for each transaction type. Permissions, as reflected on the
tables, can be as follows: “Y” means the identity can perform a transaction;
“O” means the identity can perform a transaction if the identity is the owner
of the asset, which is indicated by holding the private key to that asset; and
“P” means can perform a transaction, after the owner of the asset has given
permission to the identity. Most transactions need to be voted as approved
or not approved by voting nodes, with the exception of read operations.

A role is a group of individual permissions. Roles facilitate permission as-
signment and he