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This paper describes BigchainDB. BigchainDB fills a gap in the decentral-
ization ecosystem: a decentralized database, at scale. It points to perfor-
mance of 1 million writes per second throughput, storing petabytes of data,
and sub-second latency. The BigchainDB design starts with a distributed
database (DB), and through a set of innovations adds blockchain characteris-
tics: decentralized control, immutability, and creation & movement of digital
assets. BigchainDB inherits characteristics of modern distributed databases:
linear scaling in throughput and capacity with the number of nodes, a full-
featured NoSQL query language, efficient querying, and permissioning. Being
built on an existing distributed DB, it also inherits enterprise-hardened code
for most of its codebase. Scalable capacity means that legally binding con-
tracts and certificates may be stored directly on the blockchain database. The
permissioning system enables configurations ranging from private enterprise
blockchain databases to open, public blockchain databases. BigchainDB is
complementary to decentralized processing platforms like Ethereum, and de-
centralized file systems like InterPlanetary File System (IPFS). This paper
describes technology perspectives that led to the BigchainDB design: tra-
ditional blockchains, distributed databases, and a case study of the domain
name system (DNS). We introduce a concept called blockchain pipelining,
which is key to scalability when adding blockchain-like characteristics to the
distributed DB. We present a thorough description of BigchainDB, an anal-
ysis of latency, and preliminary experimental results. The paper concludes
with a description of use cases.

This is no longer a living document. Significant changes made
since June 8, 2016 are noted in an Addendum attached at the end.
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1. Introduction

1.1. Towards a Decentralized Application Stack

The introduction of Bitcoin [1] has triggered a new wave of decentralization in computing.
Bitcoin illustrated a novel set of benefits: decentralized control, where “no one” owns or
controls the network; immutability, where written data is tamper-resistant (“forever”);
and the ability to create & transfer assets on the network, without reliance on a central
entity.

The initial excitement surrounding Bitcoin stemmed from its use as a token of value,
for example as an alternative to government-issued currencies. As people learned more
about the underlying blockchain technology, they extended the scope of the technology
itself (e.g. smart contracts), as well as applications (e.g. intellectual property).

With this increase in scope, single monolithic “blockchain” technologies are being
re-framed and refactored into building blocks at four levels of the stack:

1. Applications

2. Decentralized computing platforms (“blockchain platforms”)

3. Decentralized processing (“smart contracts”) and decentralized storage (file sys-
tems, databases), and decentralized communication

4. Cryptographic primitives, consensus protocols, and other algorithms

1.2. Blockchains and Databases

We can frame a traditional blockchain as a database (DB), in the sense that it provides a
storage mechanism. If we measure the Bitcoin blockchain by traditional DB criteria, it’s
terrible: throughput is just a few transactions per second (tps), latency before a single
confirmed write is 10 minutes, and capacity is a few dozen GB. Furthermore, adding
nodes causes more problems: with a doubling of nodes, network traffic quadruples with
no improvement in throughput, latency, or capacity. It also has essentially no querying
abilities: a NoQL1 database.

In contrast, a modern distributed DB can have throughput exceeding 1 million tps,
capacity of petabytes and beyond, latency of a fraction of a second, and throughput
and capacity that increases as nodes get added. Modern DBs also have rich abilities
for insertion, queries, and access control in SQL or NoSQL flavors; in fact SQL is an
international ANSI and ISO standard.

1.3. The Need for Scale

Decentralized technologies hold great promise to rewire modern financial systems, supply
chains, creative industries, and even the Internet itself. But these ambitious goals need

1We are introducing the term NoQL to describe a database with essentially no query abilities. This
term is not to be confused with the database company noql (http://www.noql.com).
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scale: the storage technology needs throughput of up to millions of transactions per
second (or higher), sub-second latency2, and capacity of petabytes or more. These needs
exceed the performance of the Bitcoin blockchain by many orders of magnitude.

1.4. BigchainDB : Blockchains Meet Big Data

This paper introduces BigchainDB, which is for database-style decentralized storage:
a blockchain database. BigchainDB combines the key benefits of distributed DBs and
traditional blockchains, with an emphasis on scale, as Table 1 summarizes.

Table 1: BigchainDB compared to traditional blockchains, and traditional distributed
DBs

Traditional Blockchain
Traditional

Distributed DB
BigchainDB

High Throughput; in-
creases with nodes↑ - X X

Low Latency - X X

High Capacity; in-
creases with nodes↑ - X X

Rich querying - X X

Rich permissioning - X X

Decentralized control X - X

Immutability X - X

Creation & movement
of digital assets

X - X

Event chain structure Merkle Tree - Hash Chain

We built BigchainDB on top of an enterprise-grade distributed DB, from which BigchainDB
inherits high throughput, high capacity, low latency, a full-featured efficient NoSQL
query language, and permissioning. Nodes can be added to increase throughput and
capacity.

BigchainDB has the blockchain benefits of decentralized control, immutability, and
creation & transfer of assets. The decentralized control is via a federation of nodes with
voting permissions, that is, a super-peer P2P network [2]. The voting operates at a
layer above the DB’s built-in consensus. Immutability / tamper-resistance is achieved
via several mechanisms: shard replication, reversion of disallowed updates or deletes,
regular database backups, and cryptographic signing of all transactions, blocks & votes.
Each vote on a block also includes the hash of a previous block (except for that block’s
votes). Any entity with asset-issuance permissions can issue an asset; an asset can
only be acquired by new owners if they fulfill its cryptographic conditions. This means

2It takes light 140 ms to make one trip around the world, or 70 ms halfway around. Some financial
applications need 30-100 ms latency, though due to speed-of-light constraints those necessarily need
to be more locally constrained. Section 6 explores this in detail.
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Figure 1: From a base context of a centralized cloud computing ecosystem (left),
BigchainDB can be added as another database to gain some decentraliza-
tion benefits (middle). It also fits into a full-blown decentralization ecosystem
(right).

hackers or compromised system admins cannot arbitrarily change data, and there is no
single-point-of-failure risk.

Scalable capacity means that legally binding contracts and certificates may be stored
directly on the blockchain DB. The permissioning system enables configurations ranging
from private enterprise blockchain DBs to open, public blockchain DBs. As we deploy
BigchainDB, we are also deploying a public version.

1.5. BigchainDB in the Decentralization Ecosystem

Figure 1 illustrates how BigchainDB can be used in a fully decentralized setting, or as a
mild extension from a traditional centralized computing context.

BigchainDB is complementary to decentralized processing / smart contracts (e.g.
Ethereum VM [3][4] or Enigma [5][6]), decentralized file systems (e.g. IPFS [7]), and
communication building blocks (e.g. email). It can be included in higher-level decen-
tralized computing platforms (e.g. Eris/Tendermint [8][9]). It can be used side-by-side
with identity protocols, financial asset protocols (e.g. Bitcoin [1]), intellectual property
asset protocols (e.g. SPOOL [10]), and glue protocols (e.g. pegged sidechains [11], In-
terledger [12]). Scalability improvements to smart contracts blockchains will help fully
decentralized applications to better exploit the scalability properties of BigchainDB.

BigchainDB works with more centralized computing systems as well. One use case
is where decentralizing just storage brings the majority of benefit. Another use case is
where scalability needs are greater than the capabilities of existing decentralized pro-
cessing technologies; in this case BigchainDB provides a bridge to an eventual fully-
decentralized system.
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1.6. Contents

This paper first gives background on related building blocks, with an eye to scale:

• Section 2 - traditional blockchain scalability,

• Section 3 - distributed DBs, and

Then, this paper describes BigchainDB as follows:

• Section 4 - BigchainDB description,

• Section 5 - BigchainDB implementation, including capacity vs. nodes (Figure 9),

• Section 6 - BigchainDB latency analysis,

• Section 7 - private vs. public BigchainDBs in a permissioning context,

• Section 8 - BigchainDB benchmarks, including throughput vs. nodes (Figure 13),

• Section 9 - BigchainDB deployment, including use cases and timeline, and

• Section 10 - conclusion.

The appendices contain:

• Appendix A - a glossary, e.g. clarifying “distributed” vs. “decentralized”,

• Appendix B - blockchain scalability proposals,

• Appendix C - the Domain Name System (DNS), and

• Appendix D – further BigchainDB benchmarks.

2. Background: Traditional Blockchain Scalability

This section discusses how traditional blockchains perform with respect to scalability,
with an emphasis on Bitcoin.

2.1. Technical Problem Description

One way to define a blockchain is a distributed database (DB) that solves the “Strong
Byzantine Generals” (SBG) problem [13], the name given to a combination of the Byzan-
tine Generals Problem and the Sybil Attack Problem. In the Byzantine Generals Prob-
lem [14], nodes need to agree on some value for a DB entry, under the constraint that
the nodes may fail in arbitrary ways (including malicious behavior)3. The Sybil Attack
Problem [17] arises when one or more nodes figure out how to get unfairly dispropor-
tionate influence in the process of agreeing on a value for an entry. It’s an “attack of the
clones”—an army of seemingly independent voters actually working together to game
the system.

3It has been noted that the Bitcoin blockchain falls short of solving the original Byzantine Generals
Problem; it would be more accurate to say that it solves a relaxation of the problem [15, 16].
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2.2. Bitcoin Scalability Issues

Bitcoin has scalability issues in terms of throughput, latency, capacity, and network
bandwidth.

Throughput. The Bitcoin network processes just 1 transaction per second (tps) on
average, with a theoretical maximum of 7 tps [18]. It could handle higher throughput
if each block was bigger, though right now making blocks bigger would lead to size is-
sues (see Capacity and network bandwidth, below). This throughput is unacceptably
low when compared to the number of transactions processed by Visa (2, 000 tps typical,
10, 000 tps peak) [19], Twitter (5, 000 tps typical, 15, 000 tps peak), advertising net-
works (500, 000 tps typical), trading networks, or email networks (global email volume
is 183 billion emails/day or 2, 100, 000 tps [20]). An ideal global blockchain, or set of
blockchains, would support all of these multiple high-throughput uses.

Latency. Each block on the Bitcoin blockchain takes 10 minutes to process. For suffi-
cient security, it is better to wait for about an hour, giving more nodes time to confirm
the transaction. By comparison, a transaction on the Visa network is approved in sec-
onds at most. Many financial applications need latency of 30 to 100 ms.

Capacity and network bandwidth. The Bitcoin blockchain is about 70 GB (at
the time of writing); it grew by 24 GB in 2015 [21]. It already takes nearly a day
to download the entire blockchain. If throughput increased by a factor of 2, 000, to
Visa levels, the additional transactions would result in database growth of 3.9 GB/day
or 1.42 PB/year. At 150, 000 tps, the blockchain would grow by 214 PB/year (yes,
petabytes). If throughput were 1M tps, it would completely overwhelm the bandwidth
of any node’s connection.

2.3. Technology Choices Affecting Scalability

The Bitcoin blockchain has taken some technology choices which hurt scaling:

1. Consensus Algorithm: POW. Bitcoin’s mining reward actually incentivizes
nodes to increase computational resource usage, without any additional improve-
ments in throughput, latency, or capacity. A single confirmation from a node takes
10 minutes on average, so six confirmations take about an hour. In Bitcoin this is
by design; Litecoin and other altcoins reduce the latency, but compromise security.

2. Replication: Full. That is, each node stores a copy of all the data; a “full node.”
This copy is typically kept on a single hard drive (or in memory). Ironically, this
causes centralization: as amount of data grows, only those with the resources to
hold all the data will be able to participate.

These characteristics prevent the Bitcoin blockchain from scaling up.

2.4. Blockchain Scalability Efforts

The Bitcoin / blockchain community has spent considerable effort on improving the
performance of blockchains. Appendix B reviews various proposals in more detail.
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Previous approaches shared something in common: they all started with a block
chain design then tried to increase its performance. There’s another way: start with a
“big data” distributed database, then give it blockchain-like characteristics.

3. Background: Distributed Databases & Big Data

3.1. Introduction

We ask: does the world have any precedents for distributed databases at massive scale?
The answer is yes. All large Internet companies, and many small ones, run “big data”
distributed databases (DBs), including Facebook, Google, Amazon and Netflix.

Distributed DBs regularly store petabytes (1, 000, 000 GB) or more worth of content.
In contrast, the Bitcoin blockchain currently stores 50 GB, the capacity of a modern
thumb drive. Despite it’s relatively-small data size, members of the Bitcoin community
worry that it is getting too big. In fact, there are initiatives to prevent “blockchain
bloat” caused by “dust” or “junk” transactions that “pollute” Bitcoin’s 50 GB database
[22].

Let’s look at it another way: perhaps distributed DB technology has lessons for
blockchain DB design.

Let’s explore distributed DB scalability further.

Figure 2: Netflix experimental data on throughput of its Cassandra database (Client
writes/s by node count - Replication Factor=3). The x-axis is number of
nodes; the y-axis is writes per second. From [23].

Figure 2 illustrates the throughput properties of Cassandra, a distributed DB technol-
ogy used by Netflix. At the bottom left of the plot, we see that 50 distributed Cassandra
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nodes could handle 174, 000 writes per second. Increasing to 300 nodes allowed for 1.1
million writes per second [23]. A follow-up study three years later showed a throughput
of 1 million writes per second with just a few dozen nodes [24]. To emphasize: the
throughput of this DB increased as the number of nodes increased. The scaling was
linear.

Each node also stores data. Critically, a node only stores a subset of all data, that
is, it has partial replication. In the Netflix example [24], each piece of data has three
copies in the system, i.e. a replication factor of three. Partial replication enables an
increase in the number of nodes to increase storage capacity. Most modern distributed
DBs have a linear increase in capacity with the number of nodes, an excellent property.
Additionally, as the number of nodes increases, Cassandra’s latency and network usage
does not worsen. Cassandra can be distributed at scale not only throughout a region,
but around the globe. Contrast this to the Bitcoin blockchain, where capacity does not
change as the number of nodes increases.

The scalability properties of distributed DBs like Cassandra make an excellent refer-
ence target.

3.2. Consensus Algorithms in Distributed Databases

3.2.1. Introduction

As mentioned above, Cassandra keeps only some of the data in each node. Each bit of
data is replicated on several nodes. The nodes responsible for replicating a bit of data
use a consensus algorithm to ensure they agree on what to store. Cassandra uses the
Paxos consensus algorithm; the relevant nodes will reach agreement even if some of them
are unresponsive.

The Paxos consensus algorithm is one of many algorithms designed to solve the consen-
sus problem in unreliable distributed systems. Loosely speaking, the consensus problem
is the problem of figuring out how to get a bunch of isolated computing processes to
agree on something, when some of them may be faulty, and they can only communicate
by two-party messages. A solution takes the form of a consensus algorithm/protocol
used by all of the non-faulty processes.

3.2.2. Byzantine Fault Tolerance

One of the first precise statements of the consensus problem was in a 1980 paper by
Pease, Shostak and Lamport [25, 26]. That paper allowed the faulty processes to have
arbitrary faults; for example, they could lie, collude, selectively participate, or pretend to
be crashed. Such arbitrary faults are also known as Byzantine faults, after a 1982 follow-
up paper on the same problem [14] which called it the “Byzantine Generals Problem.”
A consensus algorithm which enables a distributed system to come to consensus despite
Byzantine faults is said to be Byzantine fault tolerant (BFT).

The 1980 paper had several nice results: a proof that, given f Byzantine faulty pro-
cesses, at least 3f + 1 processes are needed, an example (inefficient) solution with 3f + 1
processes, and a proof that there is no solution with less than 3f + 1 processes. It also
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considered what’s possible if message authentication is used (i.e. if a process changes a
message before relaying it to another process, then the change can be detected). In that
case, 2f + 1 processes suffice.

3.2.3. (Benign) Fault Tolerance

One of the most common ways for a process to be faulty is for it to be unresponsive.
That can happen, for example, if a hard drive fails or a CPU overheats. Such faults
are known as benign faults or fail-stop faults. A consensus algorithm which enables a
distributed system to come to consensus despite benign faults is said to be fault tolerant
(FT). (It would be more precise to say “benign-fault tolerant,” but it’s not up to us.) In
general, fault-tolerant consensus algorithms require at least 2f + 1 processes to be able
to tolerate up to f faulty processes.

3.2.4. Paxos

The best-known fault-tolerant consensus algorithm is Paxos; it was first published by
Lamport in 1998 [27]. Since then, many variations have been developed (e.g. “Fast
Paxos” [28]) so there is now a whole family of Paxos algorithms, including some that
are BFT. [29]

Mike Burrows of Google (co-inventor of Google’s Chubby, BigTable, and Dapper) has
said, “There is only one consensus protocol, and that’s Paxos,” [30] and “all working
protocols for asynchronous consensus we have so far encountered have Paxos at their
core.” [31] Henry Robinson of Cloudera has said, “all other approaches are just broken
versions of Paxos” and “it’s clear that a good consensus protocol is surprisingly hard to
find.” [30]

Paxos and its lineage are used at Google, IBM, Microsoft, OpenReplica, VMWare,
XtreemFS, Heroku, Ceph, Clustrix, Neo4j, and many more. [32]

Paxos is notoriously difficult to understand and risky to implement. To address this,
Raft [33] was designed specifically for ease of understanding, and therefore has lower
implementation risk. Raft has a BFT variant named Tangaroa. [34]

3.2.5. The FLP Result

An asynchronous process is a process which can’t promise it will get back to you with a
result within some time limit. It’s common to model processes as being asynchronous,
especially for large systems spread all over the globe (such as the World Wide Web). An
asynchronous consensus protocol is one that works with asynchronous processes.

In 1985, Fischer, Lynch and Paterson (FLP) published a surprising result: “no com-
pletely asynchronous consensus protocol can tolerate even a single unannounced process
death [i.e. benign fault].” [35] If that’s the case, then it seems there’s little hope for
tolerating more faults (or other kinds of faults)! Practical consensus algorithms can get
around the “FLP result” by assuming some kind of synchrony (e.g. “partial synchrony”
or “weak synchrony”), or by allowing some form of probablistic consensus (e.g. with the
probability of consensus approaching 1 over time).
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Bitcoin’s consensus algorithm does the latter: one can never be sure that the Bitcoin
network has come to consensus about a block being in the final blockchain: there’s
always the possibility that block might be in a side branch. All one can do is estimate
the probability that a block is in the final blockchain.

3.2.6. Practical BFT Consensus Algorithms

The early BFT consensus algorithms were either slow & expensive, or intended for
synchronous systems [36, 37, 38, 39]. That all changed in 1999, when Castro and Liskov
published their paper titled “Practical Byzantine Fault Tolerance” (PBFT) [40, 41]. As
the title suggests, it described a more practical (usable) BFT consensus algorithm, and
kicked off a flurry of research into practical BFT consensus algorithms. That research
continues today. Aardvark [42], RBFT [43] and Stellar [44] are examples of algorithms
aimed at improving speed and reliability.

3.3. Replication Factor & Blockchain “Full Nodes”

A modern distributed DB is designed to appear like a single monolithic DB, but under
the hood it distributes storage across a network holding many cheap storage devices.
Each data record is stored redundantly on multiple drives, so if a drive fails the data can
still be easily recovered. If only one disk fails at a time, there only needs to be one backup
drive for that data. The risk can be made arbitrarily small, based on assumptions of how
many disks might fail at once. Modern distributed DBs typically have three backups
per data object, i.e. a replication factor of 3 [45].

In contrast, Bitcoin has about 6, 500 full nodes [46]—a replication factor of 6, 500.
The chance of all nodes going down at once in any given hour (assuming complete
independence) is (1/8760)6500, or 10−25626. The chance of all nodes going down would
occur once every 3, 000 billion years. To say this is overkill is to put it mildly.

Of course, hardware failure is not the only reason for lost data. Attacks against the
nodes of the network have a much higher probability of destroying data. A well-targeted
attack to two or three mining pools could remove 50% of the computing power from
the current Bitcoin network, making the network unusable until the next adjustment to
POW complexity, which happens about every two weeks.

3.4. Strengths and Weaknesses

Let’s review the strengths and weaknesses of DBs that use distributed consensus algo-
rithms such as Paxos.

Strengths. As discussed above, Paxos is a field-proven consensus algorithm that tol-
erates benign faults (and extensions for Byzantine tolerance have been developed). It
is used by “big data” distributed DBs with the well-documented ability to handle high
throughput, low latency, high capacity, efficient network utilization, and any shape of
data, including table-like SQL interfaces, object structures of NoSQL DBs, and graph
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DBs, and they handle replication in a sane fashion. Raft, a Paxos derivative, makes
distributed consensus systems easier to design and deploy.

Weaknesses. While their technical attributes and performance are impressive, tra-
ditional “big data” distributed DBs are not perfect: they are centralized. They are
deployed by a single authority with central control, rather than decentralized control as
in blockchains. This creates a number of failings. Centralized DBs are:

• Controlled by a single admin user so that if the admin user (or account) gets
compromised, then the entire database might become compromised.

• Mutable. A hacker could change a 5-year-old record without anyone noticing (as-
suming no additional safeguards in place). For example, this would have prevented
police from doctoring evidence in the India exam scandal [47]. In blockchains, tam-
pering with past transactons usually quite difficult. Even if someone does manage
to change a past transaction, the change is easy to spot, because the hash of its
block get stored in the next block; an auditor would detect a hash mismatch.

• Not usable by participants with divergent interests in situations where
they do not want to cede control to a single administrator. For example, the risk
of losing control of the management of information is one reason that copyright
rightsholders in the music industry do not share a single DB.

• Not designed to stop Sybil attacks, where one errant node can swamp all the
votes in the system.

• Traditionally without support for the creation and transfer of digital
assets where only the owner of the digital asset, not the administrator of the DB,
can transfer the asset.

• Not typically open to the public to read, let alone write. Public openness is
important for public utilities. A notable exception is Wikidata [48].

3.5. Fault Tolerance in the BigchainDB System

Simultaneously preserving the scalability and trustless decentralization of both large-
scale databases and decentralized blockchains is the main objective of the BigchainDB
system. The following were considered when designing BigchainDB’s security measures:

• Benign faults: In the BigchainDB setup, nodes communicate through a database
which uses a fault-tolerant consensus protocol such as Raft or Paxos. Hence we
can assume that if there are 2f + 1 nodes, f benign-faulty nodes can be tolerated
(at any point in time) and each node sees the same order of writes to the database.

• Byzantine faults: In order to operate in a trustless network, BigchainDB in-
corporates measures against malicious or unpredictable behavior of nodes in the
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system. These include mechanisms for voting upon transaction and block valida-
tion. Efforts to achieve full Byzantine tolerance are on the roadmap and will be
tested with regular security audits.

• Sybil Attack: Deploying BigchainDB in a federation with a high barrier of entry
based on trust and reputation discourages the participants from performing an
attack of the clones. The DNS system, for example, is living proof of an Internet-
scale distributed federation. Appendix C describes how the DNS has successfully
run a decentralized Internet-scale database for decades.

4. BigchainDB Description

4.1. Principles

Rather than trying to scale up blockchain technology, BigchainDB starts with a “big
data” distributed database, and adds blockchain characteristics. It avoids the technology
choices that plague Bitcoin, such as full replication.

We built BigchainDB on top of an enterprise-grade distributed DB, from which BigchainDB
inherits high throughput, high capacity, a full-featured NoSQL query language, efficient
querying, and permissioning. Nodes can be added to increase throughput and capacity.

Since the big data DB has its own built-in consensus algorithm to tolerate benign
faults, we exploit that solution directly. We “get out of the way” of the algorithm to
let it decide which transactions to write, and what the block order is. We disallow
private, peer-to-peer communication between the nodes except via the DB’s built-in
communication, for great savings in complexity and for reduced security risk4. This
means that malicious nodes cannot transmit one message to part of the network and
different message to other part of the network. Everytime a node “speaks,” all the others
can listen.

4.2. High-Level Description

We focused on adding the following blockchain features to the DB:

1. Decentralized control, where “no one” owns or controls a network;

2. Immutability, where written data is tamper-resistant (“forever”); and

3. The ability to create & transfer assets on the network, without reliance on a
central entity.

Decentralized control is achieved via a DNS-like federation of nodes with voting per-
missions. Other nodes can connect to read and propose transactions; this makes it a
super-peer P2P network [2]. The voting operates at a layer above the DB’s built-in
consensus. Quorum is a majority of votes. For speed, each block is written before a

4Though we must vigilantly exercise restraint in design, as intuition is to just get the nodes talking
directly!

12



quorum of nodes validates and votes on it. Chainification actually happens at voting
time. Every block has an id equal to the hash of its transactions, timestamp, voters
list and public key of its creator-node. It also has a cryptographic signature and a list
of votes. A block doesn’t include the hash (id) of the previous block when it first gets
written. Instead, votes get appended to the block over time, and each vote has a “previ-
ous block” attribute equal to the hash (id) of the block coming before it. Immutability
/ tamper-resistance is achieved via several mechanisms: shard replication, reversion of
disallowed updates or deletes, regular database backups, and cryptographic signing of
all transactions, blocks & votes. Any entity with asset-issuance permissions can issue an
asset; an asset can only be acquired by new owners if they fulfill its cryptographic con-
ditions. This means hackers or compromised system admins cannot arbitrarily change
data, and there is no single-point-of-failure risk.

4.3. Architecture

Figure 3 illustrates the architecture of the BigchainDB system. The BigchainDB system
presents its API to clients as if it is a single blockchain database. Under the hood,
there are actually two distributed databases5, S (transaction set or “backlog”) and C
(block chain), connected by the BigchainDB Consensus Algorithm (BCA). The BCA
runs on each signing node. Non-signing clients may connect to BigchainDB; depending
on permissions they may be able to read, issue assets, transfer assets, and more; section 7
explores this more.

Each of the distributed DBs, S and C, is an off-the-shelf big data DB. We do not
interfere with the internal workings of each DB; in this way, we get to leverage the scala-
bility properties of the DBs, in addition to features like revision control and benefits like
battle-tested code. Each DB is running its own internal Paxos-like consensus algorithm
for consistency among the drives.

The first DB holds the “backlog” transactions—an unordered set of transactions S.
When a transaction comes in, it gets validated by the receiving node and if it’s valid
(according to that node), then it gets stored in S. (Identical transactions arriving later
will be rejected.) The receiving node also randomly assigns the transaction to one of the
other nodes.

There are N signing nodes. Sk = {tk,1, tk,2, . . . } is the set of transactions assigned to
node k.

Node k running the BigchainDB Consensus Algorithm (BCA) processes transactions
from S as follows: It moves transactions from the unordered set Sk into an ordered list,
creates a block for the transactions, and puts the block into the second database C. C
is an ordered list of blocks where each block has reference to a parent block and its data,
that is, a blockchain.

A signing node can vote on whether it considers a block valid or invalid . To decide,
the signing node checks the validity of every transaction in the block, and if it finds an

5This can be implemented as two databases, or as two tables in the same database. While there is no
practical difference, for the sake of clarity we describe it as two separate databases.

13



S

#A payloadS1

#G payloadS1

#H payloadS1

#B payloadS3

#E payloadS3

#D payloadS2

#C payloadS2

C

#0 null

#B payloadS3
#E payloadS3

#A payloadS1
#G payloadS1
#H payloadS1

#D payloadS2
#C payloadS2

new block

invalid tx

Transaction set S (”backlog”) Block chain C

Figure 3: Architecture of BigchainDB system. There are two big data distributed
databases: a Transaction Set S (left) to take in and assign incoming transac-
tions, and a Blockchain C (right) holding ordered transactions that are “etched
into stone”. The signing nodes running the BigchainDB Consensus Algorithm
update S, C, and the transactions (txs) between them.

invalid transaction, then the signing node votes that the block is invalid . If the signing
node finds no invalid transactions, then it votes that the block is valid .

Each block starts out as undecided , with no votes from signing nodes. Once there is
majority of positive (valid) votes for a block, or a majority of negative (invalid) votes,
the block goes from undecided to decided valid or decided invalid , respectively, and voting
on the block stops. Once it is decided, it can be treated as “etched into stone.” This
process is similar to the idea of multiple confirmations in Bitcoin blockchain.

A block B in the blockchain has an ID, timestamp, the actual transactions, and vote
information. Section 4.5 describes block, transaction, and voting models precisely.

4.4. Behavioral Description

This section examines the flow of transactions from a client to a given server node. Each
server node has its own view of the transaction backlog S, and the chain C.

Figure 4 and subsequent figures illustrate the high-level architecture where each card
is a physical machine. The client machines are on the left6. Clients are connected to
the BigchainDB server node(s) (voting node), shown on the right. Any client may send
transactions to any BigchainDB server node.

6In some images, we truncate the illustration of the client, for brevity.
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#C payloadS2

chain
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Figure 4: Left: The backlog S starts empty and the chain C starts with only a genesis
block. Right: Clients have inserted transactions into backlog S and assigned
to nodes 1, 3, and 2.

In Figure 4 left, one client has a transaction with ID #A, and a payload. BigchainDB’s
backlog S is empty; and the chain C is empty except for a genesis block with a null
transaction. Other clients also have transactions that they transmit to server nodes.

When a client submits a transaction, the receiving node assigns it to one of the fed-
eration nodes, possibly itself, and stores it in the backlog S. Figure 4 right illustrates
an example state. We see that node 1 is assigned three transactions, having IDs of #A,
#G, and #H. Node 3 is assigned transactions with IDs #B and #E. Node 2 is assigned
transactions #D and #C. Nothing has been stored on the chain C yet (besides the
genesis block).

server node

backlog

#B payloadS3

#E payloadS3

#D payloadS2

#C payloadS2

chain

#0 null

#A payloadS1
#G payloadS1
#H payloadS1

new block

invalid tx

server node

backlog

#D payloadS2

#C payloadS2

chain

#0 null

#B payloadS3
#E payloadS3

#A payloadS1
#G payloadS1
#H payloadS1

new block

Figure 5: Left: Node 1 has moved its assigned transactions from backlog S to chain C.
Right: Node 3 has processed its assigned transactions too.

Figure 5 left shows a state where Node 1 has processed all the transactions assigned
to it. It has taken the transactions #A, #G, and #H from the backlog S, created a
block to hold them, then written the block onto the chain C. The block points to C’s
previous block.

Figure 5 right shows where Node 3 has processed all of its assigned transactions too,
and therefore written them as a block in chain C.
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When a block is first written to C, it starts off as undecided . Each server node may vote
positively (for) or negatively (against) a block. A block should only be voted positively
if all previous blocks are not undecided , and all transactions in the block itself are valid.
As soon as there is a majority of positive votes for a block, or a majority of negative
votes, the block goes from undecided to decided valid or decided invalid , respectively.

In this example, the block created by Node 1 gets voted on, and becomes decided valid .
Then, the block from node 3 gets voted on, and becomes decided invalid . In Figure 5
right, we depict the distinction as a clear background for decided valid , versus a shaded
background for decided invalid .)

server node
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#E payloadS3

chain

#0 null

#B payloadS3
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#A payloadS1
#G payloadS1
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#D payloadS2
#C payloadS2
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new block
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Figure 6: Transactions from an invalid block (on right, shaded) get re-inserted into back-
log S for re-consideration.

While the overall block was considered invalid, some of the transactions in the invalid
block may have actually been valid, and so BigchainDB gives them another chance.
Figure 6 illustrates how: transactions #B and #E get re-inserted into backlog S for
new consideration. Figure 6 also shows how BigchainDB approaches storage of invalid
blocks. There’s a block in the chain C that is invalid. However, BigchainDB doesn’t
remove the block; there’s no need, as the block is already marked invalid, disk space
is not a problem, and it’s faster and simpler to keep all blocks there. Similarly, voting
doesn’t stop after a block becomes decided, because it’s faster for each node to simply
vote than the extra step to check whether voting is necessary.

Figure 7 emphasizes how multiple machines are configured. Figure 7 left shows that
more than one client may talk to a given node. Figure 7 right shows that there is more
than one node, though each node has a view into the backlog S and the chain C.

4.5. Data Models

4.5.1. Transaction Model

Transactions are the most basic kind of record stored by BigchainDB. There are two
kinds: creation transactions and transfer transactions. A creation transaction initiates

16



server nodeclient 1

backlog

#A payloadS1

#G payloadS1

#H payloadS1

#B payloadS3

#E payloadS3

#D payloadS2

#C payloadS2

2

3

5

#A payload

client 2

#B payload

client x

#D payload

chain

#0 null

#B payloadS3
#E payloadS3

#A payloadS1
#G payloadS1
#H payloadS1

#D payloadS2
#C payloadS2

4

new block

invalid tx

1

server nodeclient 1

backlog

#A payloadS1

#G payloadS1

#H payloadS1

#B payloadS3

#E payloadS3

#D payloadS2

#C payloadS2

2

3

5

#A payload

client 2

#B payload

client 3

#B payload

client 4

#B payload

chain

#0 null

#B payloadS3
#E payloadS3

#A payloadS1
#G payloadS1
#H payloadS1

#D payloadS2
#C payloadS2

4

new block

invalid tx

1

server node

backlog

#A payloadS1

#G payloadS1

#H payloadS1

#B payloadS3

#E payloadS3

#D payloadS2

#C payloadS2

chain

#0 null

#B payloadS3
#E payloadS3

#A payloadS1
#G payloadS1
#H payloadS1

#D payloadS2
#C payloadS2

new block

invalid tx

client x

#B payload

Figure 7: Left: More than one client may talk to a given node. Right: there are multiple
nodes. Typically, a client connects to just one node (an arbitrarily picked one).

the records of an asset7 in BigchainDB, including some description of what it is, a list of
its initial owners, and the conditions that must be fulfilled by anyone wishing to transfer
it. A transfer transaction transfers ownership of the asset to new owners, and assigns
new spending conditions.

A transaction is represented by a JSON document with the following structure:

{

"id": "<hash of transaction , excluding signatures >",

"version": "<version number of the transaction model >",

"transaction": {

"fulfillments": ["<list of fulfillments >"],

"conditions": ["<list of conditions >"],

"operation": "<string >",

"timestamp": "<timestamp from client >",

"data": {

"hash": "<hash of payload >",

"payload": "<any JSON document >"

}

}

}

where:

• id: The hash of everything inside the serialized transaction body (see below),
with one wrinkle: for each fulfillment in fulfillments, fulfillment is set to
null. The id is also the database primary key.

7While we use the word “asset,” BigchainDB can be used to record information about things more
general than assets.
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• version: Version number of the transaction model, so that software can support
different transaction models.

• fulfillments: List of fulfillments. Each fulfillment contains a pointer to an un-
spent asset and a crypto-fulfillment that satisfies a spending condition set on the
unspent asset. A fulfillment is usually a signature proving the ownership of the
asset.

• conditions: List of conditions. Each condition is a crypto-condition that needs
to be fulfilled by by a transfer transaction in order to transfer ownership to new
owners.

• operation: String representation of the operation being performed (currently ei-
ther “CREATE” or “TRANSFER”). It determines how the transaction should be
validated.

• timestamp: Time of creation of the transaction in UTC. It’s provided by the client.

• hash: The hash of the serialized payload.

• payload: Can be any JSON document. It may be empty in the case of a transfer
transaction.

Full explanations of transactions, conditions and fulfillments are beyond the scope of
this paper; see the BigchainDB Documentation [49] and the Interledger Protocol [12] for
additional details.

4.5.2. Block Model

A block is represented by a JSON document with the following structure:

{

"id": "<hash of block >",

"block": {

"timestamp": "<block -creation timestamp >",

"transactions": ["<list of transactions >"],

"node_pubkey": "<public key of the node creating the block >",

"voters": ["<list of federation nodes public keys >"]

},

"signature": "<signature of block >",

"votes": ["<list of votes >"]

}

• id: The hash of the serialized block. This is also a database primary key; that’s
how we ensure that all blocks are unique.

• block:

– timestamp: Timestamp when the block was created. It’s provided by the
node that created the block.
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– transactions: A list of the transactions included in the block.

– node pubkey: The public key of the node that created the block.

– voters: A list of public keys of federation nodes. Since the size of the feder-
ation may change over time, this will tell us how many nodes existed in the
federation when the block was created, so that at a later point in time we can
check that the block received the correct number of votes.

• signature: Signature of the block by the node that created the block. (To create
the signature, the node serializes the block contents and signs that with its private
key.)

• votes: Initially an empty list. New votes are appended as they come in from the
nodes.

4.5.3. Vote Model

Each node must generate a vote for each block, to be appended to that block’s votes

list. A vote has the following structure:

{

"node_pubkey": "<the public key of the voting node >",

"vote": {

"voting_for_block": "<id of the block the node is voting for >",

"previous_block": "<id of the block previous to this one >",

"is_block_valid": "<true|false >",

"invalid_reason": "<None|DOUBLE_SPEND|TRANSACTIONS_HASH_MISMATCH|

NODES_PUBKEYS_MISMATCH",

"timestamp": "<timestamp of the voting action >"

},

"signature": "<signature of vote >"

}

4.6. Block Validity and Blockchain Pipelining

Figure 8 shows an example of a blockchain C. Block B1 is the genesis block with a null
transaction.

Blocks are written to C in an order decided by the underlying DB. This means that
when a signing node inserts a block into C, it cannot provide a vote at the same time
(because a vote includes a reference to the previous block, but the previous block isn’t
known yet). Only after the write is fully-committed does the block order become clear.

Nodes vote on blocks after order becomes clear. When a block is created, it starts
off undecided . As soon as there is majority of positive votes for a block, or a major-
ity of negative votes, the block goes from undecided to decided valid or decided invalid ,
respectively.

Note that, unlike a typical block chain, the BigchainDB block model doesn’t have
a reference to the previous block. Instead, it has a list of votes, and each vote has
a reference to the previous block (i.e. the block that the voting node considered the
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Figure 8: Pipelining in the BigchainDB blockchain C. Votes accumulate on each block.
Blocks can continue to accumulate on the blockchain, even though their par-
ents, grandparents, etc. may be undecided. The key is that when adding a
new block, we can include transactions that do not depend on transactions in
undecided blocks.

previous block, based on its view of the changefeed). We say that “chainification happens
at voting time.”

Normally, all votes will reference the same previous block, but it’s possible that differ-
ent votes may claim that different blocks are the previous block. This can happen, for
example, if a node goes down. When it comes back up, there’s no reliable way to recover
the order of the new blocks it missed while down. What should it put as the id/hash of
the previous block? We will experiment with various options (e.g. an id/hash value of
“null” or the same id/hash as the majority of other votes).

If a node goes down, it won’t accumulate a long list of new blocks that it must vote on
when it comes back up. That’s because the list of expected voters (nodes) for a block is
set when that block is created. If a node is down when a block is created, then it won’t
be put on the list of expected voters for that block.

Block B2 has received three votes of five possible. In this example, all three votes are
positive. Since the majority of nodes voted that the block is valid , the block is considered
decided valid .

Block B3 has received five votes of five possible. There was a positive vote, then
negative, then positive, then two more negative votes. Since the majority of nodes voted
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that the block is invalid , the block is considered decided invalid . This block can stay in
the chain because all the votes show that it is invalid. It will be ignored when validating
future transactions. By keeping the block in place, we can quickly progress the chain to
child blocks.

Block B4 is undecided because it does not yet have a majority of invalid or valid votes
from nodes. Voting on B4 continues.

It is crucial that despite B4 being undecided , it still has a child block B5. This
is possible because the DB’s built-in consensus algorithm determines the order of the
blocks, and we have logically separated writing blocks from voting. “Forking” is not a
risk as it is not even in the vocabulary of the DB, let alone supported in code. The
reason is that every node is working on the same blockchain (instead of every node
working on their own replica of the blockchain which may be different from the other
nodes) and every node communicates through the database which is basically an open
broadcast channel (instead of communicating individually with each node). Because of
this, any node can try to add a block, but only one becomes the child to B4; the rest
follow according to the built-in consensus algorithm. It is a single railroad track where
the location of the next plank is based on previous planks. We do not have to stop at
adding a single plank after an undecided block—we can keep aggressively laying track,
such as block B6 in the figure.

When there are undecided parent blocks, we need to do one more thing to prevent
double-spending: any transaction put into a new block must not depend on transactions
in an undecided block. For example, inputs of a new transaction must not be in inputs
of any undecided blocks. This is enforced in two ways: when creating new blocks on
undecided blocks, such double-spend transactions are not allowed, and when voting, any
block containing such transactions is voted invalid.

We call this “blockchain pipelining” because this behavior is reminiscent of pipelining
in microprocessors. There, the microprocessor starts executing several possible instruc-
tions at once. Once the microprocessor has worked out the proper order for the instruc-
tions, it collates the results as output and ignores useless results. As with microprocessor
pipelining, blockchain pipelining gives significant speed benefits.

4.7. BigchainDB Consensus Algorithm (BCA)

The BigChainDB Consensus Algorithm (BCA) is a state machine that runs on each
“signing” node (server). This section outlines the BCA using Python-like pseudocode.8

4.7.1. Main Loop

Before starting the mainLoop() on each signing node, the databases S and C must be
created and initialized. One of the initialization steps is to write a genesis block to C.

Listing 1 has high-level pseudocode for the BCA. It shows the mainLoop() running on
signing node k. Every signing node runs the same mainLoop().

8The actual code will be open source, so if you’re curious about implementation details, you can read
that.

21



Line 4 emphasizes that there is equal access by all the nodes to the databases S and
C. The BCA operates by moving data from transaction set S to blockchain C, and
occasionally in the other direction as well.

Listing 1: BigchainDB Consensus Algorithm. This algorithm runs on every signing node.

1 def mainLoop (): # Pseudocode for signing node k

2 # Assume S and C exist and are initialized ,

3 # and C contains a genesis block.

4 global S, C # tx set and blockchain globally visible

5 while True:

6 S = assignTransactions(S, k)

7 Sk , C = addBlock(Sk , C, k)

8 C = voteOnBlocks(C, k)

9

Line 5 is the start of the main loop. All remaining pseudocode is part of this loop,
which runs continuously until the node is shut down.

Line 6 accepts transactions into S and assigns them to nodes, line 7 moves unordered
transactions from S into ordered, grouped-by-block transactions in C, and line 8 is where
the node votes on undecided blocks.

Listing 2: Parallel version of BigchainDB Consensus Algorithm.

1 def mainLoopParallel ():

2 start => 1 assignTransactionLoop () processes

3 start => 1 addBlockLoop () processes

4 start => 1 voteLoop () processes

5

6 def assignTransactionLoop ():

7 while True:

8 S = assignTransactions(S, k)

9

10 def addBlockLoop ():

11 while True:

12 Sk , C = addBlock(Sk , C, k)

13

14 def voteLoop ():

15 while True:

16 C = voteOnBlocks(C, k)

17

The pseudocode of Listing 1 is written as if there is a single process, but each major
step can actually be a separate, independent process. In fact, there may be multiple
processes doing each step; this helps performance tremendously. Listing 2 shows the
pseudocode.

4.7.2. Assigning Transactions

Listing 3 algorithms are for assigning transactions, as follows:
Listing 3 assignTransactions() is the main routine that groups the two major steps:

accepting and assigning incoming transactions (line 2), and reassigning old transactions
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(line 3).
Listing 3 assignNewTransactions() shows how a node accepts an incoming transac-

tion from a client and assigns it to another node. The receiving node first checks if the
transaction is valid. If it’s invalid, an error message is sent back to the client. If it’s
valid (according to the receiving node), it gets randomly assigned to one of the other
nodes. We assign transactions to a node rather than allowing nodes to grab transactions,
because assignment greatly reduces double-spend detections in the block chain building
side, and therefore helps throughput. We considered assigning nodes deterministically,
for example based on the hash of the transaction. However, that would be problematic
if a malicious node repeatedly inserted a bad transaction into C, then when it got kicked
back to S, the malicious node got the same transaction again. Instead, we assign the
node randomly with equal probability to each node, except the current node k in order
to avoid a duplicate vote.

In the algorithm, line 7 accepts transactions and loops through them; line 8 checks the
validity of the transaction; line 9 chooses which node to assign the transaction to, with
uniform probability; line 11 records the assign time (see the next algorithm for why);
and line 12 actually assigns the transaction to the chosen node.

Listing 3: Routines for accepting and assigning transactions.

1 def assignTransactions(S, k):

2 S = assignNewTransactions(S, k)

3 S = reassignOldTransactions(S, k)

4 return S

5

6 def assignNewTransactions(S, k):

7 for each new tx , t from outside:

8 if t is valid: # defined later

9 i ∼ U({0, 1, . . ., k-1, k+1, . . ., N-1})

10 # i is chosen randomly from all nodes but this one (k)

11 t.assign_time = time()

12 Si = Si ∪ t

13 else:

14 # inform the sending -client why t is not valid

15 return S

16

17 def reassignOldTransactions(S, k):

18 for Sj in {S1 , S2 , . . .}:
19 for each tx , t, in Sj:

20 if (time() - t.assign_time) > old_age_thr:

21 i ∼ U({0, 1, . . ., k-1, k+1, . . ., N-1})

22 t.assign_time = time()

23 Si = Si ∪ t

24 Sj = Sj - t

25 return S

26

Listing 3 reassignOldTransactions() re-assigns transactions that are too old. Trans-
actions can get old if a node goes down, is running slowly, is acting maliciously, or is
not performing its duties more generally. This routine ensures transactions assigned to
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a node don’t get stuck in limbo, by re-assigning old-enough transactions to different
nodes. It loops through all assigned transactions (lines 18-19), and if a transaction is
old enough (line 20) a new node is randomly chosen for it (line 21), a new assign time
is set (line 22), and the transaction is re-assigned from the old node (node j) to the new
node (node i). For this routine to work, it also needs the unassigned-transactions to
have an assign time, which is done in assignNewTransactions() (line 11)).

4.7.3. Adding and Voting on Blocks

Listing 4 addBlock() creates and adds a (non-genesis) block to C, and ends with a set
of transactions to postpone

Listing 4: Routine for adding normal blocks.

1 def addBlock(Sk , C, k):

2 Tpostpone = {}

3 Bnew = ∅
4 Btail = most recent block in C

5 Tnew = []

6 for t in Sk:

7 if dependsOnUndecidedBlock(t, Btail):

8 Tpostpone = Tpostpone ∪ t

9 elif transactionValid(t, Btail):

10 Tnew.append(t)

11 id = sha3 hash of {Tnew, other data wrt Sec. 5.5}

12 votes = []

13 Bnew = Block(id , Tnew, votes , other data wrt Sec. 5.5)

14 add Bnew to C # Consensus algorithm will determine order

15 Sk = ∅
16 Sk = Sk ∪ Tpostpone
17 return Sk, C

18

Lines 2− 3 initialize the routine’s main variables – the block to add Bnew, and the
transactions to postpone adding until later Tpostpone.

Lines 4− 17 creates a block and adds it to C, in an order determined by C’s consensus
algorithm. Line 4 updates its pointer Btail to the most recent block in C. It is important
to grab Btail here rather than computing it on-the-fly, in case new blocks are added
while the rest of the routine is running. Line 5 initializes the ordered list of transactions
to be added to the block, and lines 7− 10 add them one at a time. If a transaction t
depends on an undecided block (risking double-spend) it will be postponed to another
block by being added to Tpostpone (lines 7− 8). Otherwise, if it is considered valid, then
it is added to Tnew (lines 9− 10). Otherwise, it will be discarded. Lines 11− 14 create
the block and add it to C.

Listing 4 lines 15− 16 occur once the block has been successfully added. With new
transactions now in C, those transactions can be removed from S, as line 15 does by
clearing Sk. Line 16 reconciles by adding back any postponed transactions, for example
any transactions that risked being double-spends due to being added after an undecided
block.
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Listing 5: Routine for voting on blocks.

1 def voteOnBlocks(C, k):

2 B = oldest block in C that node k hasnt voted on

3 while B:

4 vote = transactionsValid(B)

5 B.V[k] = vote

6 if B is decided and invalid: copy txs from B back into S

7 B = (child block of B) or ∅
8 return C

9

Listing 5: Routine for voting on blocks voteOnBlocks() is the routine for node k to vote
on blocks that it hasn’t yet voted on.

Note that a node actually votes on blocks that may have already been decided, because
it’s faster to vote than to first query whether the block is decided. Lines 3− 8 iterate
from the oldest block that node k hasn’t voted on (found in line 2) to the newest block
(when temporary variable goes to ∅ in line 7). For each block, line 4 computes a Boolean
of whether all transactions in the block B are valid, and line 5 stores that in B’s votes
variable B.V, signed by node k. Line 6 gives potentially valid transactions another
chance.

4.7.4. Transaction Validity

Listing 6: Routines for transaction validity.

1 def transactionsValid(T, Bi):

2 # are all txs valid?

3 for t in T:

4 if not transactionValid(t, Bi):

5 return False

6 return True

7

8 def transactionValid(t, Bi):

9 # Is tx valid in all blocks up to and including Bi?

10 # (Ignore Bi+1, Bi+2, . . .)
11 if t is ill -formed , commits double -spend , etc.

12 return False

13 if dependsOnUndecidedBlock(t, Bi)

14 return False

15 return True

16

17 def dependsOnUndecidedBlock(t, Bi):

18 # returns True if any of the inputs of t are in a block

19 # that is not voted enough (enough x’s or
√
’s)

20 # in [B0, B1 , . . . , Bi]. Ignores [Bi+1, Bi+2, . . .]
21

Listing 6 outlines the routines for determining the validity of transactions.

transactionsValid() is the top-level routine to simply loop through all the transactions
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supplied in the transaction list T (lines 3− 6), and if any transaction is found to be
invalid (line 4) the routine returns False.

transactionValid() measures whether a transaction is valid, based on traditional blockchain
validity measures (ill-formed, double-spend, etc.) in lines 11− 12 and also based on
whether it depends on an undecided block (lines 13− 14).

dependsOnUndecidedBlock() clarifies what it means to depend on an undecided block.

4.8. Consensus Algorithm Checklist

As we were designing the BCA, we addressed some concerns described below.

Block construction order. When a node finalizes the creation of a block, that block
must not allow any more transactions to be added to it. This is to ensure that blocks
created after the block can check that their transactions don’t double-spend assets spent
by previous blocks’ transactions. This wouldn’t be possible if a block could get more
transactions added to it after block finalization.

Hashing votes. Is there transaction malleability because votes are not hashed? This
may look like a problem, because a block’s hash can be propagated to its child block
before all its votes are in. A preliminary answer would be to have a second chain of
hashes that actually includes the votes. But the solution can be simpler than that: a
hash without votes is fine because the votes are digitally signed by the signing nodes,
and therefore not malleable.

Dropping transactions. If a node goes down, what happens to the transactions as-
signed to it? Do those transactions get dropped? In our initial design, the answer
was mostly no, because all transactions are stored in S until they have been com-
mitted to a block. However, if a node went down or, more generally misbehaved,
transactions assigned to that node might not be handled. To address this, we added
a way to re-assign transactions if the previous node assignment got stale: algorithm
reassignOldTransactions() in Listing 3.

Denial of service. Are there any transactions that can be repeatedly called by aggres-
sor clients or a malicious server node, which tie up the network? To our knowledge, this
is not an issue any more than with a traditional web service.

Client transaction order. We must ensure that transactions sent from the same client
in a particular order are processed in that order—or at least with a bias to that order.
When a client sends two transactions to the same node, that receiving node could change
their order before writing them to the backlog. That wrong ordering would probably
be preserved by the RethinkDB changelog, so all other nodes would see the same wrong
ordering. At the time of writing, we were considering several possible solutions, including
using multi-node consensus on client-provided timestamps.

Database built-in communication vulnerability. The nodes communicate using
the big data DB’s own built-in consensus algorithm like Paxos to tolerate benign failures.
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Is this a vulnerability? The answer is that many nodes would have to be affected for it
to have any major consequences.

Double spends. Are there any ways to double-spend? This is a useful question to keep
asking at all stages of development. In this regard BigchainDB does exactly the same as
the Bitcoin network. All past transactions are checked to make sure that input was not
already spent. This can be fast for BigchainDB because it can use an optimized query
of the underlying DB.

Malicious behavior. Questions: How does BigchainDB detect that a node has bad
(Byzantine) behavior? Does it discourage bad behavior? How? Answers: Overall, it’s a
simpler problem because of the federation model. Bad behavior can be detected when a
node’s vote on a block is different than the majority. There are many possible ways to
discourage bad behavior, from manual punishment decided by the federation, to needing
to post a security deposit (bond) and automatically losing it upon bad behavior.

Admin becoming god. Does the system administrator have any powers that allow
them to play “god”, and thus constitute a single point of failure? We were careful to
limit the power of the system administrator to even less than a voting node. So to
our knowledge, the system administrator cannot play god because all write transactions
(including updating software) need to be voted on by the federation.

Offline nodes. Q: What happens if a voting node goes offline? If many go offline?
A: One or a few offline nodes is fine, as a quorum (the number of nodes needed to
decide a block) is still online. If there are many offline nodes, then a block could get
stuck in an undecided state. (Transactions depending on transactions in the undecided
block would also get stuck in the backlog.) Our solution is to wait until enough nodes
come back online to vote on and decide the block. It is a reasonable solution, because
all consensus algorithms require some minumum proportion of nodes to be online to
work. An alternative solution would be to limit the amount of time that a block can be
undecided before being marked decided invalid , so that all its transactions can be copied
back to the backlog for reconsideration.

Chaining blocks rather than transactions. Q: Why do we chain together blocks,
rather than chaining together transactions? A: There are several reasons. First, it’s
easier to write 1000 blocks per second (each containing up to 1000 transactions) than it
is to write 1 million transactions per second (to the blockchain database). Second, each
voting node only has to append a vote (data structure) to each block, rather than to
each transaction, saving a lot of storage space. (If a voting node votes yes for a block,
then we can conclude that it found all the contained transactions to be valid.) Lastly,
when constructing a vote, the signing node must compute a cryptographic signature.
That takes time. We save time by doing that only once per block (rather than per
transaction).
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4.9. Transaction Validity, Incentivization, and Native Assets

There are many things to check when determining if a transaction is valid. Signatures
must be valid. Certain fields must be present (and no others). Various values must have
the correct syntax. If the transaction is to create or register a new asset, then the same
asset must not already exist. If the transaction is to transfer an asset, then the asset
must exist, the transfer transaction must be requested by the current owner (who must
sign it with their private key), not by a previous owner and not by a non-owner. “You
can only spend what you have.”

Every voting node checks the validity of every transaction (so it can decide how to vote
on the transaction’s block). Recall that BigchainDB consensus is federation-based. A
node gets to vote on a transaction based on whether it has been given a voting node role.
Contrast this to a POW model, where the probability of a node voting is proportional to
its hash power, which assuming all miners have state-of-the-art hardware is equivalent
to electricity spent; or to POS where probability of a node voting is proportional to how
much money it has.

Traditionally, blockchains have held two types of assets. “Native assets,” like Bitcoins
or Litecoins, are built into the core protocol. The consensus uses these assets to measure
transaction validity and to reward voting by native-asset transaction fees and mining
rewards. Second are non-native “overlay assets” in overlay protocols sitting above the
core protocol (e.g. SPOOL [10]). However, this traditional approach to native assets and
reward has weaknesses:

• Overlay Asset Double-Spend. Traditional blockchains’ consensus models do
not account for overlay assets. There is nothing at the core protocol level to prevent
a double-spend of an overlay asset9.

• Native Asset Friction to Network Participation. Traditional blockchain
voting nodes need to get paid in the native asset, so any new participants in the
network must acquire the native asset, typically on an exchange, before being able
to conduct a transaction. Acquiring the native asset is especially difficult on newer
blockchains with native assets that are not yet available on many exchanges. This
is a high barrier to entry when compared to traditional web services, where any
new participant can conduct a transaction by paying in a standard currency like
U.S. dollars with a standard payment method like a credit card.

BigchainDB overcomes these issues as follows (and as shown in Table 2):

• Native consensus voting on every asset. Every transaction keeps track of
which asset it is operating on, chaining back to the transaction that issued the

9Ethereum is unlike traditional blockchains in this regard. According to Christian Lundkvist, “If a non-
native asset has well-reviewed and tested rules (such as the Standard Token Contract) then the core
protocol makes sure that the contract is executing correctly, which does enforce things like protection
against double spending of tokens/non-native assets. Furthermore, in upcoming hard forks Ether will
be implemented as a token on par with other tokens, i.e. using smart contract logic.”
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asset. Every asset is “native” in the sense that it’s used to measure transaction
validity. This overcomes the issue of “asset overlay double-spend.”

• Low friction to network participation. Like a traditional web service, the
network operator sets the terms on how to join the network and conduct trans-
actions—but in this case the network operator is the collective will of the voting
nodes. The voting nodes also determine how users pay for transactions.

Table 2: Native Assets Validity & Incentivization

Traditional Blockchain BigchainDB

Native Asset Overlay Assets Native Asset Overlay Assets

Asset Types Y (one) Y (multiple) Y (multiple) N

Validated by Blockchain
Consensus

Y N Y N/A

Incentivization Via
Native Asset

(e.g. Mining Reward)
External Fees

(e.g. Transactions, Storage)

Payment for Transactions
Obtain Native Assets

(e.g. Via an Exchange)
Fiat Currency

(e.g. Traditional channels)

4.10. Incentivization & Security

In POW and POS blockchains, the network, incentive model, and security of the network
are inextricably linked. Security is intrinsic to the system. But as discussed in section 2
and appendix B, both POW and POS have scalability challenges. Though it’s a double-
edged sword: when incentives are intrinsic to the system too, there is motivation to
game the system. An example is the emergence of mining pools to benefit the most from
Bitcoin’s built-in incentive (mining rewards).

In a federation like BigchainDB, the security of each node and aggregate security over
the entire network are extrinsic. This means the rules for confidentiality, availability,
and integrity are outside the core network design [50]. For instance, if all nodes have
weak rules for security, the network will be breached. By contrast, if a minimum fraction
of the network nodes have reasonable security standards, the network as a whole can
withstand attacks. Extrinsic incentives can have benefits: in a private deployment, the
network participants are motivated simply by the benefits of being part of the network
(e.g. lower costs, lower fraud, new functionality). Extrinsic incentives can work in a
public deployment too, for similar reasons: the voting nodes may have their own reasons
for an open, public database to survive, for example a mandate as a nonprofit, and this
makes the interests aligned (see also section 7.5).
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5. BigchainDB Implementation Details

5.1. Choice of Distributed DB

The BigchainDB design is flexible enough to have been built on top of a wide variety of
existing distributed DBs. Of course, we had to choose a first one to build on. To select
which, we first did benchmarking, then added additional criteria.

There are > 100 DBs to choose from, listed for example at [51] and [52]. This was our
shortlist: Cassandra [53], HBase [54], Redis [55], Riak [56], MongoDB [57], RethinkDB
[58], and ElasticSearch [59]. Each of these DBs uses Paxos or a Paxos descendant such
as Raft [33].

First, we did preliminary performance investigation of the DBs in our shortlist: Each
had 15 − 105 writes/s per thread, 290 − 1000 serial reads/s per thread, and 80 − 400
reads/s per thread.

While there was some variation in performance among the DBs, the key thing to
notice is that performance is per thread: performance improves as the number of threads
increases. This is different than traditional blockchain technologies, where performance
stays flat or worsens.

Given that all DBs tested had good scalability properties, we realized that other
criteria were even more important. In particular:

1. Consistency. Distributed DBs must make a trade-off between performance and
consistency (in the CAP theorem [60] sense, not ACID sense [61]). For a blockchain,
consistency means trustworthy ordering of transactions, so we prefer DBs with
strong consistency guarantees.

2. Automatic Change Notifications. One way for a node to find out if a change
has happened in a DB is to ask it on a regular basis (i.e. polling), but that’s not
as efficient as having the DB automatically notify the node of changes. We wanted
a DB with automatic change notifications as a standard feature.

Automatic change notifications bring another benefit: they improve tamper-resistance
(beyond what a chain of hashes offers). If a hacker somehow manages to delete or
update a record in the data store, the hashes change (like any blockchain). In ad-
dition, a datastore with automatic change notifications would notify all the nodes,
which can then immediately revert the change and restore the hash integrity.

Of the options considered, we found that RethinkDB met our needs best. It has strong
consistency guarantees [62] and it offers automatic change notifications (“changefeeds”)
as a standard feature [63]. Therefore, we built the first version of BigchainDB on top of
RethinkDB.

RethinkDB is a JSON (NoSQL) database with a flexible query language [64]. It is
optimized for scalable realtime feeds, which is useful for collaborative apps, streaming
analytics, multiplayer games, realtime marketplaces, and connected devices / IoT10. It
is written in C++, is open source, and has a vibrant development community [65].

10IoT = Internet of Things
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In the future, we envision a variety of distributed databases being “blockchain-ified”
according to the approach of this paper. Every relational database, document store and
graph store might someday have a blockchain version.

5.2. BigchainDB Capacity

Each node in the RethinkDB cluster adds its own storage capacity to the total database
capacity.

For example, if each RethinkDB node were run on a d2.8xlarge instance on Amazon
Web Services (AWS), then each of those instances could contribute its (24×2000) GB =
48000 GB of storage to the database. 32 nodes would have 32 × 48000 = 1536000 GB
total capacity, i.e. more than a petabyte. (This calculation assumes no replication. A
replication factor of R would decrease the total capacity by a factor of R.)

For quick reference, Figure 9 shows how total capacity depends on the number of
nodes.
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Figure 9: BigchainDB Capacity versus Number of Nodes. Each node adds another
48000 GB to the total storage capacity.

5.3. Serialization

Before we can hash or sign a JSON message (e.g. a transaction payload), we must convert
it to a string in a standard way (i.e. with the same result, regardless of the programming
language or computer architecture used). That is, we must serialize the JSON message
in a standard way. Fortunately, there is a standard: RFC 7159 [66].

We do JSON serialization using the dumps() function in python-rapidjson11, a

11https://github.com/kenrobbins/python-rapidjson
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Python wrapper for rapidjson12 (a fast and RFC 7159-compliant JSON parser/gen-
erator written in C++). Here’s how we call it:

1 import rapidjson

2 rapidjson.dumps(data ,

3 skipkeys=False ,

4 ensure_ascii=False ,

5 sort_keys=True)

Here’s what the parameters mean:

• data is the JSON message, stored in a Python dict

• skipkeys = False: Ensures that all keys are strings

• ensure ascii = False: The RFC recommends UTF-8 encoding for maximum
interoperability. By setting ensure ascii to False we allow Unicode characters
and force the encoding to UTF-8

• sort keys = True: The output is sorted by keys

5.4. Cryptography

This section outlines the cryptographic algorithms used by BigchainDB.

5.4.1. Cryptographic Hashes

All hashes are calculated using the SHA3-256 algorithm. We store the hex-encoded hash
in BigchainDB. Here is a Python implementation example, using pysha313:

1 import hashlib

2 # monkey patch hashlib with sha3 functions

3 import sha3

4 data = "message"

5 tx_hash = hashlib.sha3_256(data).hexdigest ()

5.4.2. Keys and Signatures

We use the Ed25519 public-key signature system [67] for generating public/private key
pairs (also called verifying/signing keys). Ed25519 is an instance of the Edwards-curve
Digital Signature Algorithm (EdDSA). As of April 2016, EdDSA was in “Internet-Draft”
status with the IETF but was already widely used [68, 69].

BigchainDB uses the the ed25519 Python package14, overloaded by the cryptocondi-
tions library15.

All keys are represented using base58 encoding by default.

12https://github.com/miloyip/rapidjson
13https://bitbucket.org/tiran/pykeccak
14https://github.com/warner/python-ed25519
15https://github.com/bigchaindb/cryptoconditions
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6. BigchainDB Transaction Latency

A key question is how long it takes for a transaction to get “etched in stone” (i.e. into a
block that is decided valid). To begin answering that question, we can trace the life of a
transaction t, from the time a client sends it to the time the client gets a confirmation that
t is in a decided valid block. Figure 10 and Figure 11 illustrate the life of a transaction.

Initial Node

t’s Assigned Node

Client

t t Superficial
validation
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t
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Full
validation
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B(t)

C
B(t)

valid but depends on a 
tx in an undecided block 

valid
invalid

fully valid

to C on all signing nodes

B(t) full 
or timeout

Figure 10: Life of a Transaction, Part 1/2

The time interval required for each step will vary. It can depend on how busy a node
is, how busy the cluster is, network latency, and other factors. Nevertheless, we can still
identify each step in the life of a transaction, to determine the main sources of latency.

Generally speaking, the client will send their transaction t over the Internet to a
BigchainDB node. The transmission time tin depends on how far the client is from the
BigchainDB node, but it will typically range from tens to hundreds of milliseconds (ms).
Once t is in a decided valid block, a BigchainDB node can send a success notification to
the client. The transmission time tout will be approximately the same as tin. Figure 12
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All signing nodes are doing the same, in parallel.

Signing Node k

B(t) is added to the tail of k’s queue of
blocks to vote on. To vote on a block, k 

must fully validate all of its txs.
C

t

B(t)

t

B(t)

√

√

√

Figure 11: Life of a Transaction, Part 2/2

illustrates tin and tout.
We can write the total latency as:

ttotal = tin + tinternal + tout (1)

where tinternal is internal latency: the latency contributed by the Bigchain DB cluster
itself. tin and tout depend on the client, but tinternal will be independent of the client
(as a first approximation). The remainder of this section is focused on developing an
estimate for tinternal.

BigchainDB Cluster

Client
tin

tout

Figure 12: Transmission latencies between the client and the BigchainDB cluster.

Let’s start with some notation. There are many sources of latency within the BigchainDB
cluster, but a key one is the time it takes information to travel from one node to another
node. Let’s call the typical one-hop node-to-node latency thop. The duration of thop
depends a lot on how the nodes are distributed. If the nodes are all in one data center,
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then thop might be less than 1 ms. If the nodes are distributed globally, then thop might
be 150 ms.

Another key source of latency is query latency tq. If a node queries the underlying
(distributed) database, it might happen that the node itself already has all the infor-
mation it needs to determine the result. That is probably unusual, so we neglect that
possibility. More typically, the required information is on one or more other nodes. Get-
ting that information requires at least two internal network hops: one to send the query
out, and one to get information back. For that case, we can write:

tq ≥ (2 · thop) + tqp (2)

where tqp is the query processing time.
If all nodes in the cluster are in one data center, then thop and tqp might be similar in

duration, so we may not be able to neglect tqp relative to thop.
Let’s return to figuring out a back-of-the-envelope estimate for tinternal. In general,

it could be quite large, because a transaction might bounce back and forth between the
backlog S and the bigchain C before it finally ends up in a decided verified block. What
we can do is determine an approximate minimum tinternal (i.e. a lower bound).

When t arrives at a BigchainDB node, the node does a superficial validation of t (i.e.
not checking if it depends on a transaction in an undecided block). That requires at
least one query (e.g. to check if t does a double-spend), so the time required is at least
tq. (If t is invalid, then the client can be notified and that’s the end of the story for t.)

If t is valid, then the BigchainDB node assigns t to a randomly-choosen node. It
then writes t to the backlog (S). The underlying distributed database will notify all the
other nodes about the change to S (i.e. that there is a new transaction), along with the
contents of t. It takes at least thop time for t to propagate over the internal BigchainDB
network.

t then enters the tail of a queue on the assigned node, where it waits for the assigned
node to check it for validity (including whether t depends on a transaction in an undecided
block). In general, there may be several transactions ahead of t in that queue. The
assigned node must check each of those transactions first; each check requires at least
one query, so at least tq time is needed to check each transaction ahead of t. In the best
case, there are no transactions ahead of t in the assigned node’s queue, so the waiting
time is zero.

Once t gets its turn at being considered, the assigned node must check to see if t is
valid (including whether t depends on a transaction in an undecided block). That takes
at least tq time. If t does depend on a transaction in an undecided block, then it must
go back to waiting for consideration for inclusion in a block (i.e. back to the tail of the
assigned node’s queue).

Suppose t is okayed for inclusion in a block. Let’s call that block B(t). t must wait for
B(t) to accumulate 1000 transactions (or whatever value the BigchainDB operator sets),
or for a timeout to occur (e.g. five seconds since the last transaction was added to the
block). The timeout is to ensure that a block doesn’t wait forever for new transactions.
When there are lots of new transactions coming in, the time t spends waiting for B(t)
to fill up will typically be negligible compared to thop, so we can ignore it.
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The assigned node then writes B(t) to C. It takes time for B(t) to propagate to all
other nodes in the cluster: at least thop.

Each signing node will be notified about the new block B(t), including its contents.
Signing node k will add the newly-arrived block to the tail of its queue of blocks to vote
on. k’s local copy of B(t) will wait for k to vote on all other blocks ahead of B(t) in k’s
queue. In the best case, there are no nodes ahead of B(t) in k’s queue, so the waiting
time is zero.

How long does it take for a node to vote on one block? If there are 1000 transactions
in the block, then the node may have to check the validity of all 1000 transactions. (It
doesn’t always have to check all the transactions: if it finds an invalid one, it can stop
before checking any more.) Once the validity checks are done, the node must compose
a vote (data structure) and calculate its digital signature, but the time to do that is
negligible compared to the time needed to check validity.

The node doesn’t have to check the validity of each transaction one at a time. It can
check many transactions in parallel at the same time, depending on how many processes
are available to do validity-checking. In principle, there may be sufficient processors
available to check all transactions for validity in parallel at once. Therefore, in the best
case, the time to vote on one block will be approximately the same as the time to check
one transaction for validity: tq.

Once B(t) gets to the head of k’s queue, B(t) might already be decided, but k votes
on it regardless (i.e. k doesn’t spend time checking if B(t) is already decided). As
explained above, voting on B(t) takes at least tq time.

Once B(t) has gotten votes from a majority of the signing nodes, it becomes either
decided valid or decided invalid . (The list of nodes which can vote on B(t) is set when
B(t) is created, and doesn’t change if nodes are added or removed from the cluster.)
The deciding vote takes time thop to propagate to all the other nodes in the cluster.

If B(t) is decided invalid then the transactions inside B(t) (including t) get sent back
to S for reconsideration in a future block.

If B(t) is decided valid , then t is “etched in stone” and a success notification message
can be sent to the client.

We can now estimate a minumum tinternal by adding up all the times outlined in the
preceding paragraphs:

tinternal ≥ 3 · tq + 3 · thop (3)

Then, using Eq. (2):

tinternal ≥ 9 · thop + 3 · tqp (4)

If the cluster nodes are widely-distributed, then thop is much larger than tqp and:

tinternal ≥ 9 · thop (5)

As a rule of thumb for widely-distributed clusters, the minimum internal latency is
about an order of magnitude larger than the one-hop node-to-node latency. (Remember
that tinternal ignores client-to-BigchainDB network latency.)
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There are a few general cases, depending on how the BigchainDB nodes are distributed.
Table 3 summarizes.

Table 3: Latency based on geographic distribution of the cluster

How nodes are distributed
One-hop node-to-node latency in

the cluster (thop)

Minimum internal transaction
latency in the cluster
(minimum tinternal)

In one data center ≈ 0.25 ms ≈ 2.25 ms + 3 · tqp
In one region (e.g. America) ≈ 70 ms ≈ 630 ms

Spread globally ≈ 150 ms ≈ 1350 ms

There are a couple of caveats to keep in mind when reading Table 3: 1) The minimum
internal latency estimates in Table 3 are order-of-magnitude approximations. They
should only be interpreted as guidelines for what to expect. 2) In a data center, the
query latency tqp may be similar in magnitude to thop, so to get a better estimate of the
minimum internal latency, one needs an estimate of tqp.

7. Private vs. Public BigchainDB, and Authentication

7.1. Introduction

The way that BigchainDB is designed, permissioning sits at a layer above the core of
the design. However, we have already seen many questions about “private vs. public”
versions of BigchainDB, privacy, and authentication. In our view, a rich permissioning
framework is the technology foundation. This section explores permissions, roles, private
BigchainDBs, and privacy. It then has an extended section on a public BigchainDB,
which we believe is tremendously important. It finally discusses authentication and the
role of certificate-granting authorities.

7.2. Permissions, Identities, and Roles

Permissions are rules about what a user can do with a piece of data. Permissions are
used in all kinds of computing environments, from shared file systems like Dropbox and
Google Drive, to local file systems in Windows, iOS, and Linux, to distributed DBs. We
should expect blockchain DBs to have rich permissioning systems.

Permissioning ideas from these other systems can inform our design. In Unix, each
file or directory has three identity roles (owning user, owning group, others) and three
types of permissions for each role (read, write, execute), for a total of nine permission
values. For example, the permission values “rwxr--r---” means that the owning user
can read, write, and execute (rwx); the owning group can read but not write or execute
(r--), and others have no permissions (---).

A BigchainDB database instance is characterized by which identities have which per-
missions. Table 4 and Table 5 gives examples of permissions on a private and public
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BigchainDB, respectively. This is loosely comparable to a corporation’s internal intranet
and the public Internet. We will elaborate on these shortly.

Table 4: Example Permissioning / Roles in an Enterprise BigchainDB Instance

Action
Requires

vote
Voting
Node

Sys
Admin

Issuer Trader Broker Authenticator Auditor
Core vs
Overlay

Vote on Admin &
Asset Actions

Y Core

Admin actions

Update Role or
Permissions

Y Y Y Core

Add/Remove
Voting Node

Y Y Y16 Core

Update software Y Y Y Core

Asset actions

Issue Asset Y Y Core

Transfer Asset Y O O P Core

Receive Asset Y Y Y Core

Grant Read Ac-
cess on Asset

Y O O P P Core

Consign Asset Y O O Overlay

Receive Asset
Consignment

Y Y Y Y Overlay

Add Asset Infor-
mation

Y O O P Overlay

Add Authentica-
tion Information

Y O O P Overlay

Create Certificate
of Authenticity

N O O P Overlay

Read actions

Read Asset Infor-
mation

N Y Y O Y P P P Overlay

Read Certificate
of Authenticity

N Y Y O Y P P P Overlay

An identity, which signifies the holder of a unique private key, can be granted a
permission for each transaction type. Permissions, as reflected on the tables, can be
as follows: “Y” means the identity can perform a transaction; “O” means the identity
can perform a transaction if the identity is the owner of the asset, which is indicated
by holding the private key to that asset; and “P” means can perform a transaction,
after the owner of the asset has given permission to the identity. Most transactions need

16Action is permitted only during the network initiatization process. Once a network is live, the sys
admin can no longer act unilaterally.
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to be voted as approved or not approved by voting nodes, with the exception of read
operations.

A role is a group of individual permissions. Roles facilitate permission assignment and
help clarify the rights given to users in their identity and with their permissions. Roles
can be custom-created depending on the context. An identity may hold multiple roles,
where the identity’s permissions are the sum of the identity’s role permissions and any
other permissions that have been granted to it.

The core BigchainDB protocol includes as few actions or transaction types as possi-
ble, in order to maximize backwards-compatibility and minimize complexity. Overlay
protocols can add new features, such as SPOOL [10] for unique asset ownership, which
adds actions like consignment and authentication to property transactions. Table 4 and
Table 5 each have core protocol actions, as well as some overlay protocol actions from
SPOOL.

7.3. Private BigchainDBs

A private BigchainDB could be set up amongst a group of interested parties to facilitate
or verify transactions between them in a wide variety of contexts, such as exchanging of
securities, improving supply chain transparency, or managing the disbursement of roy-
alties. For instance, the music industry could choose to form a trust network including
record labels, musicians, collecting societies, record stores, streaming services, and sup-
port providers such as lawyers and communications agencies. A consortium of parties
operating a private BigchainDB comprise an “enterprise trust network” (ETN).

Table 4 illustrates permissioning of a sample private BigchainDB instance for use in
an ETN.

The first column shows actions allowed; the second column shows whether the action
needs voting; columns 3-9 are roles; and the final column indicates whether the action
is part of the core BigchainDB protocol.

An identity holding the “Voting Node” role (column 3) can vote on asset actions. No
other role is able to do so.

Voting Nodes can update permissions for any other identity (row 2). Changing per-
missions requires voting consensus from other nodes. This is how new identities entering
the system are assigned permissions or roles, and also how Voting Nodes are added or
removed.

A Voting Node may propose an update to the Voting Node software (row 4). Voting
Nodes will only update once they reach consensus. Voting Nodes also must be able to
read an asset (rows 14-15) in order to be able to vote.

Like a Voting Node, an identity with “Sys Admin” role can propose to update per-
missions or update voting node software. This role is helpful because voting nodes may
not be up-to-date technically when the Sys Admin is. Crucially, the Sys Admin cannot
unilaterally update the software; rather, it can only propose software and ensure that
the voting nodes hit consensus about updating. The Sys Admin must also be able to
read an asset (rows 14-15), in order to debug issues that may arise with the software.
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The main job of the “Issuer” role is to issue assets (row 5). But it can also do
everything that a Trader role can do.

The “Trader” role conducts trades of assets, has others conduct trades on its behalf,
and lines up reading and authentication of assets. It can transfer ownership to an
identity, though only if it is the owner of the asset as indicated by the “O” (row 6); or
be on the receiving end of an asset transfer (row 7). Similarly, if it is the owner then it
can consign an asset to have another identity transact with the asset on its behalf (row
9); or be on the receiving end as consignee (row 10). By default, read permissions are
off, but a Trader can allow others to read the asset info (row 10 grants permission; row
15 read). The Trader can also add arbitrary data or files to an asset (row 11).

A “Broker / Consignee” role (column 7) gets a subset of the Trader’s permissions -
only what is needed to be able to sell the work on the owner’s behalf.

We describe the “Authenticator” role (column 8) further in section 7.6.
For simplicity of presentation, some details have been omitted compared to the actual

implementation. For example, usually a Consignee has to accept a consignment request.

7.4. Privacy

Q: Bank A doesn’t want Bank B to see their transactions. But if they’re both voting
nodes, can Bank B see Bank A’s transactions?
A: This is not really related to BigchainDB; it doesn’t care about the content of the
transaction. For the transaction to be valid, it just needs to have a current unspent
input and a correct signature.

Q: But if every voting node knows the identity of the nodes in a transaction, and can
see the amount transacted in order to validate the transaction, than isn’t that a loss of
privacy?
A: The nodes in a transaction are just public keys. The way that the mapping between
a public key and an identity is done should be taken care of by Bank A and Bank B. If
they want to hide the amount that is being transacted, they can do that; BigchainDB
doesn’t care.

Let’s say that Bank A creates an input “A” and gives it to “PUBKA”, and inside
the data field it says that this is an input for “B”, and “B” is just a serial number.
BigchainDB makes sure that input “A” can only be spent once and that only “PUBKA”
can spend it. There are no amounts involved.

7.5. A Public BigchainDB

7.5.1. Introduction

A BigchainDB can be configured to be more public, with permissioning such that anyone
can issue assets, trade assets, read assets, and authenticate. We are taking steps towards
a first public BigchainDB17.

17We envision that ultimately there will be many public BigchainDBs. More than one is not a big
problem, as there is no native token built into the DB. Universal resource indicators (URIs) will
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7.5.2. Motivations

Decentralization technology has potential to enable a new phase for the Internet that
is open and democratic but also easy to use and trust [70][71][72]. It is intrinsically
democratic, or at the very least disintermediating. It is also trustworthy: cryptography
enables the conduct of secure and reliable transactions with strangers without needing
to trust them, and without needing a brand as proxy.

The discourse is around benefits in both the public and private sector. In the public
sector, the most obvious benefit is in the future shape of the Internet and especially
the World Wide Web [73]. These technologies have fundamentally reshaped society over
the past two decades. The 90s Web started out open, free-spirited, and democratic. In
the past 15 years, power has consolidated across social media platforms and the cloud.
People around the world have come to trust and rely on these services, which offer
a reliability and ease of use that did not exist in the early Internet. However, these
services are massively centralized, resulting in both strict control by the central bodies
and vulnerability to hacking by criminals and nation-states.

Decentralization promises a large positive impact on society. An antidote to these
centralized services and concentration of power is to re-imagine and re-create our Internet
via decentralized networks, with the goal of giving people control over their data and
assets and redistributing power across the network.

7.5.3. Public BigchainDB Roles

Table 5 describes permissioning of a public BigchainDB instance. Here, BigchainDB is
configured such that each User (column 6) can do anything, except for sensitive roles
such as voting, administration, and authentication. Critically, Users can issue any asset
(column 6, row 5) and read all assets (column 6, row 14); this is one of the defining
features of an open blockchain.

7.5.4. Public BigchainDB Federation Caretakers

At the core of a public BigchainDB are the “Caretakers”: organizations with an identity
that has a “Voting Node” role. An identity with that role can vote to approve or reject
transactions, and can vote whether to assign the “Voting Node” role to another identity.
(Note: an organization can have more than one identity, so a Caretaker could have two
or more identities with a “Voting Node” role.)

To start, the public BigchainDB will have five identities with the Voting Node role:
three held by ascribe and two held by other organizations chosen by ascribe. That is,
the public BigchainDB will start with three Caretakers: ascribe and two others. From
there, additional Caretakers will be selected and added to the federation by existing
Caretakers. Caretakers will have divergent interests to avoid collusion, but must have
one thing in common: they must have the interests of the Internet at heart. In choosing
Caretakers, there will be a preference to organizations that are non-profit or building

make them easy to distinguish.
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Table 5: Example Permissioning / Roles in an Public BigchainDB

Action
Requires

vote
Voting
Node

Sys
Admin

Issuer User Authenticator

Vote on Admin & Asset Ac-
tions

Y Core

Admin actions

Update Role or Permissions Y Y Y Core

Add/Remove Voting Node Y Y Y16 Core

Update software Y Y Y Core

Asset actions

Issue Asset Y Y Core

Transfer Asset Y O Core

Receive Asset Y Y Core

Grant Read Access on Asset Y N/A N/A Core

Consign Asset Y O Overlay

Receive Asset Consignment Y Y Overlay

Add Asset Information Y O Overlay

Add Authentication Infor-
mation

Y O P Overlay

Create Certificate of Au-
thenticity

N O Overlay

Read actions

Read Asset Information N Y Y O P Overlay

Read Certificate of Authen-
ticity

N Y Y O P Overlay

foundational technology for a decentralized Internet; and for diversity in terms of region,
language, and specific mandate.

The right organizational structure will be critical to the success of a public BigchainDB.
Governance issues have plagued the Bitcoin blockchain [74]. We can take these as lessons
in the design of a public BigchainDB. We are consulting with lawyers, developers, aca-
demics, activists, and potential Caretakers to develop a strong, stable system that is
transparent enough to be relied on and flexible enough to meet the needs of the net-
work.

Ultimately, the public BigchainDB will operate entirely independently under its own
legal entity. It will choose its own Caretakers and set its own rules—but it will always
work toward the long-term goal of a free, open, and decentralized Internet.
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We are gathering a consortium of potential public BigchainDB nodes. If you think
your organization fits as one of these nodes, or have suggestions for nodes, please

contact the authors.

7.6. BigchainDB Authentication of Assets

The “Authenticator” role gives a formal place for authentication and certificate-granting
authorities. Examples may include a credit rating agency, an art expert certifying the
authenticity of a painting, a university issuing a degree, a governmental body issuing a
permit, or a notary stamping a document.

While the BigchainDB can function completely without the Authenticator role, in a
decentralized network where anyone can issue assets, it is clear that third parties will
step in to provide an extra layer of trust for asset buyers.

These third parties would do all the things trusted third parties do today—act as an
escrow agent, place a stamp or seal of approval, issue a certificate, or rate the quality or
reputation of the asset issuer.

For authentication to be issued, a Trader enables an identity to have read and au-
thentication permission on an asset (Table 4, row 8), then the Authenticator reviews all
relevant information about the asset, and issues a report as a transaction (Table 4, row
12).

The owner of the asset may then create a cryptographic Certificate of Authenticity
(COA), a digital document that includes all the digitally signed authentication reports
from the various authenticators. The COA is digitally signed as well, so even if printed
out, tampering can be detected. The COA can then be used by the seller as a pointer
to authenticity, to show that the asset is not fraudulent.

A public BigchainDB should not be prescriptive—it should be open to new sources
of authority. The issuance of certificates does not have to be limited to traditional
authorities. BigchainDB allows flexibility in this respect, remaining open to the many
possible approaches that will undoubtedly be created by users. BigchainDB therefore
limits its role to providing a mechanism for reliable gathering and aggregation of signed
data.

We imagine a rich community of authorities signing assets. For example, point-of-
creation software or hardware vendors could certify that a particular digital creation
was created by their software or hardware at a given point in time. Individuals could
leave certified reviews for movies, restaurants, consumer goods, or even reputational
reviews for other individuals. Other examples could emerge from ideas in prediction
markets [75], the issuance of securities, and the rating of those securities.

In a model where anyone can issue an authoritative statement about someone or
something, the reputation of the Authenticator will be critically important. How do you
know whose certificates you can trust? We anticipate the development of social media
reputation systems that go beyond Facebook Friends and Likes. BigchainDB enables
the widespread implementation of new reputation systems such as the Backfeed protocol
for management of distributed collaboration [76], or systems drawing inspiration from

43



fictional reputation economies described by Cory Doctorow (Whuffie) [77], Daniel Suarez
(Levels) [78], and others.

8. Experimental Results

8.1. Goals

BigchainDB’s algorithms are designed to “get out of the way” of the underlying database,
so we expect the main limiter on performance to be how that underlying database
interacts with the physical compute resources (e.g. write speed and I/O among nodes).
Because of that, and because BigchainDB is built on top of RethinkDB, we began with
experiments to test the scalability properties of RethinkDB.

Full benchmarks on the performance of BigchainDB will appear in the near future.

8.2. Experiments on Throughput

Appendix D.1 describes the details of the experimental setups.
In one experiment, we increased the number of nodes every ten seconds, up to 32

nodes. We used RethinkDB’s System Statistics Table to record the write throughput
over time.
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Figure 13: Time-series plot, where when we increased the number of nodes, the through-
put increased proportionately.

Figure 13 shows how write throughput increased every time a node was added. When
the number of nodes reached 32, the write throughput was just over 1 million transactions
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per second (i.e. 1000 blocks written per second, with 1000 valid transactions per block).18
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Figure 14: Write performance versus number of nodes. There is linear scaling in write
performance with the number of nodes.

Figure 14 shows data from the same experiment, except it shows how write throughput
was affected by the number of nodes (rather than time). The plot is both boring and
exciting: it shows how write throughput increases linearly with the number of nodes.

8.3. Other Experiments

Appendix D contains descriptions and results of further experiments.

9. BigchainDB Deployment

9.1. BigchainDB Use Cases

Many BigchainDB use cases are like traditional blockchain use cases, except focused on
situations where higher throughput, lower latency, or more storage capacity is necessary;
where powerful querying or permissioning are helpful; or for simplicity of deployment
since it feels like using a NoSQL database. For example, BigchainDB can handle the
throughput of high-volume payment processors, and directly store contracts receipts, or
other related documents on the DB alongside the actual transaction. Another example
is “Bitcoin 2.0” applications, to keep transaction costs reasonable as the application
scales19.

18 In Figure 13, the y-axis label of “Writes/s” should be interpreted to mean “Effective transaction-writes
per second”. The same is true of Figure 14.

19 As of February 2016, the fee required to ensure that a Bitcoin transaction goes through is about
$0.10 USD. There is no predefined fee for Bitcoin transactions; it’s determined by market forces. To
estimate the fee, we can look at the fees that were paid in the last X blocks, and use that information
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Some BigchainDB use cases are also like traditional distributed DB use cases, except
focused where blockchain characteristics can benefit: decentralization, immutability, and
the ability to create and transfer digital assets.

BigchainDB use cases include:

• Tracking intellectual property assets along the licensing chain. BigchainDB
can reduce licensing friction in channels connecting creators to audiences, and
gives perfect provenance to digital artifacts. A typical music service has 38 mil-
lion songs—BigchainDB could store this information in a heartbeat, along with
licensing information about each song and information about use by subscribers.
In another example, consider a medium-sized photo marketplace running 100, 000
transactions a day; to put this on Bitcoin would cost $10, 000 per day and tie up
the Bitcoin network.

• Receipts, and certification. BigchainDB reduces legal friction by providing
irrefutable evidence of an electronic action. And, BigchainDB is big enough that
supporting information like receipts and certificates of authenticity (COAs) can be
stored directly on it, rather than linking to the document or storing a hash.

• Legally-binding contracts can be stored directly on the BigchainDB next to
the transaction, in a format that is readable by humans and computers [81].

• Creation and real-time movement of high-volume financial assets. Only
the owner of the asset can move the asset, rather than the network administra-
tor like in previous database systems. This capability reduces costs, minimizes
transaction latency, and enables new applications.

• Tracking high-volume physical assets along whole supply chain. BigchainDB
can help reduce fraud, providing massive cost savings. Every RFID tag in existence
could be entered on a BigchainDB.

• Smart contracts (decentralized processing), where the application must be fully
decentralized and database functionality is crucial.

• Data science applications where the BigchainDB captures massive data streams,
and data scientists can easily run queries against BigchainDB in their data mining
and analytics tasks.

9.2. Transaction Encryption

Normally, transactions stored in BigchainDB aren’t encrypted, but users can encrypt
the payload if they want, using the encryption technology of their choice. (The payload

to calculate a fee that will give a high probability that a transaction will go into the next block.
Usually a higher fee will give a higher priority to a transaction, but in the end, it’s the miners
that decide whether they want to include the transaction in the block or not. Usually the fees are
around 15k-20k satoshi per 1000 bytes, so that would be the average fee to pay. Useful resources
are blockchain.info [79], Tradeblock [80] (in the charts, select fee/size), and the Bitcoin wiki page on
transaction fees [46].
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of a transaction can be any valid JSON, up to some maximum size as explained below.)
Other aspects of the transaction, such as the current owner’s public key and the new
owner’s public key, aren’t encrypted and can’t be encrypted.

9.3. BigchainDB Limitations

Because BigchainDB is built on top of an existing “big data” database, it inherits many
of the limitations of that database.

The first version of BigchainDB is built on top of RethinkDB, so it inherits some of
RethinkDB’s limitations, including a maximum of 32 shards per table (increasing to 64).
While there’s no hard limit on the document (transaction) size in RethinkDB, there is a
recommended limit of 16MB for memory performance reasons. Large files can be stored
elsewhere; one would store only the file location or hash (or both) in the transaction
payload.

9.4. BigchainDB Products & Services

We envision the following products and services surrounding BigchainDB:

1. BigchainDB: a blockchain database with high throughput, high capacity, low
latency, rich query support, and permissioning.

• For large enterprises and industry consortia creating new private trust net-
works, to take advantage of blockchain capabilities at scale or to augment their
existing blockchain deployments with querying and other database function-
ality

• BigchainDB will be available in an out-of-the-box version that can be deployed
just like any other DB, or customized versions (via services, or customized
directly by the user).

• BigchainDB will include interfaces such as a REST API, language-specific
bindings (e.g. for Python), RPC (like bitcoind), and command line. Be-
low that will be an out-of-the-box core protocol, out-of-the-box asset overlay
protocol [10], and customizable overlay protocols.

• BigchainDB will support legally binding contracts, which are generated au-
tomatically and stored directly, in a format readable by both humans and
computers [81]. There will be out-of-box contracts for out-of-the-box proto-
cols, and customizable contracts for customizable protocols.

• BigchainDB will offer cryptographic COAs, which can be generated automat-
ically and stored directly on the BigchainDB. There will be out-of-box and
customizable versions.

• BigchainDB is built on a large, open-source pre-existing database codebase
that has been hardened on enterprise usage over many years. New code will
be security-audited and open source.
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2. BigchainDB as a Service, using a public BigchainDB instance, or a private
BigchainDB with more flexible permissioning.

• For developers who want the benefits of blockchain databases without the
hassle of setting up private networks.

• For cloud providers and blockchain platform providers who want scalable
blockchain database as part of their service.

• For “Bitcoin 2.0” companies looking to keep transaction costs reasonable as
they go to scale

• Main interfaces will be a REST API directly, REST API through cloud
providers, and language-specific bindings (e.g. Python).

• With the features of the BigchainDB listed above.

3. “Blockchain-ify your database” service, to help others bring blockchain prop-
erties to other distributed DBs. Think MySqlChain, CassandraChain, and Neo4jChain.

• For DB vendors looking to extend their DB towards blockchain applications.

• For DB developers who want to play with blockchain technology.

9.5. Timeline

Like many, we have known about Bitcoin and blockchain scalability issues for years.
Here’s the timeline of how BigchainDB took shape:

• Oct 2014 – Gave our first public talk on big data and blockchains [82]

• Apr 2015 – Preliminary investigations; paused the project to focus on our IP
business

• Sep 2015 – Re-initiated the project; detailed design; building and optimizing

• Dec 2015 – Benchmark results of 100, 000 transactions/s

• Dec 2015 – Alpha version of the software integrated into an enterprise customer
prototype

• Dec 2015 – Initial drafts of the whitepaper shared with some reviewers

• Jan 2016 – Benchmark results of 1, 000, 000 transactions/s

• Feb 10, 2016 – BigchainDB was publicly announced

• Feb 10, 2016 – The first public draft of the whitepaper was released

• Feb 10, 2016 – Version 0.1.0 of the software was released open-source on GitHub20.
The software was not recommended for external use yet, but development was in
the open.

20http://github.com/bigchaindb/bigchaindb. Core BigchainDB software is licensed under an Affero
GNU Public License version 3 (AGPLv3). The BigchainDB drivers supported by ascribe GmbH are
licensed under an Apache License (version 2.0).
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• Apr 26, 2016 – Version 0.2.0 released

The current BigchainDB Roadmap can be found in the bigchaindb/org repository
on GitHub21.

10. Conclusion

This paper has introduced BigchainDB. BigchainDB fills a gap in the decentralization
ecosystem: a decentralized database, at scale. BigchainDB performance points to 1
million writes per second, sub-second latency, and petabyte capacity. It has easy-to-use
and efficient querying. It features a rich permissioning system that supports public and
private blockchains. It is complementary to decentralized processing technologies (smart
contracts) and decentralized file systems, and can be a building block within blockchain
platforms.
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Appendices

A. Glossary

SQL DB – a database that stores data in table format and supports the Structured
Query Language (SQL); a relational database. Example: MySQL.

Ledger – a database that stores data in a table format, where entries are economic
transactions

NoSQL DB – a database that stores data in a non-table format, such as key-value store
or graph store. Example: RethinkDB.

NoQL DB – a database without any query language to speak of. Obviously, this hinders
data management. Example: Bitcoin blockchain.

21https://github.com/bigchaindb/org/blob/master/ROADMAP.md
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Distributed DB – a database that distributes data among more than one node in a
network22. Example: RethinkDB.

Fully replicated DB – a distributed DB where every node holds all the data.

Partially replicated DB – a distributed DB where every node holds a fraction of the
data.

Decentralized DB – a DB where no single node owns or controls the network.

Immutable DB – a DB where storage on the network is tamper-resistant.

Blockchain DB – a distributed, decentralized, immutable DB, that also has ability for
creation & transfer of assets without reliance on a central entity.

Bitcoin blockchain – a specific NoQL, fully-replicated, blockchain DB.

BigchainDB – a specific NoSQL23, partially-replicated, blockchain DB.

B. Blockchain Scalability Proposals

Here, we review some proposals to solve the Strong Byzantine Generals’ (SBG) problem
while scaling the blockchain, and to allow blockchain-like behavior at greater scales. This
list is not intended to be exhaustive.

B.1. Base Consensus Approaches

Consensus refers to the way nodes on a blockchain network approve or reject new trans-
actions. These approaches differ in (a) how a node becomes a voting node, and (b) how
each node’s voting weight is set. These choices can impact the blockchain’s performance.

Proof of Work (POW). POW is the baseline approach used by the Bitcoin blockchain.
There is no restriction on who can enter the network as a voter. A node is chosen at
random, proportional to the processing ability it brings to the network, according to
a mathematical puzzle — its “hash rate”. Work [83] may be SHA256 hashing (the
algorithm used by Bitcoin), scrypt hashing (used by Litecoin), or something else.

POW has a natural tendency towards centralization. It is a contest to garner the most
hashing power. Power is currently held by a handful of mining pools.

Proof of Stake (POS) [84]. In the POS model, there is no restriction on who can enter
the network. To validate a block, a node is chosen at random, proportionally to how
much “stake” it has. “Stake” is a function of the amount of coin held, and sometimes of
“coin age, a measurement of how many days have passed since last time the coin voted.

POS promises lower latency and does not have the extreme computational require-
ments of POW.

22Sometimes there is confusion, and “distributed” is used when the actual meaning is that of “decen-
tralized”, most notably with the term “distributed ledger”.

23There can be SQL support to via wrapping the NoSQL functionality or using the BigchainDB design
on a distributed SQL DB

50



However, over the last couple years, POS proposals have evolved as issues are identified
(e.g. “nothing at stake,” “rich get richer,” and “long range attacks”) and fixes proposed.
These fixes have resulted in POS protocols becoming increasing complex. Complex
systems generally have more vulnerabilities, compromising security.

Federation. A federated blockchain is composed of a number of nodes operating under
rules set for or by the group. Each member of a federation typically has an equal vote,
and each federation has its own rules about who can join as voting node. Typically,
the majority or 2/3 of the voting nodes need to agree, for a transaction or block to be
accepted (“quorum”).

Federations may have of any number of voting nodes. More nodes mean higher latency,
and less nodes means the federation is not as decentralized as many would like. Besides
voting nodes, other nodes may have permission to issue assets, transfer assets, read, and
so on (super-peer P2P network).

Membership rules for voting nodes can vary widely between models. In the (pre-
acquisition) Hyperledger model, the requirement was having a TLD and SSL certificate
[85]. In the original Stellar model, membership was based on a social network, until it
was forked [86]. In Tendermint [87], Slasher [88, 89], and Casper [90], anyone could join
by posting a fixed bond as a security deposit, which would be lost if the voting node
were to act maliciously24.

Membership rules can directly affect the size of the federation. For example, in Ten-
dermint, the lower the security deposit (bond), the more voting nodes there are likely
to be.

Federations imply that to be a voting node, one must reveal their identity. This means
they are not as suitable where censorship resistance is a key design spec. This is different
than POW and POS.

B.2. Consensus Mashups

The base consensus approaches described above can be creatively combined.

Hierarchy of POW—Centralized. Big Bitcoin exchanges operate their own inter-
nal DBs of transactions, then synchronize a summary of transactions with the Bit-
coin blockchain periodically. This is similar to how stock exchange “dark pools” oper-
ate—financial institutions make trades outside the public stock exchange, and periodi-
cally synchronize with the public exchange.

Hierarchy of Small Federation—Big Federation. An example is AI Coin [91]. The
top level has 5 power nodes with greater influence, and the bottom level has 50 nodes
with less influence.

Hierarchy of POW—Federation. An example is Factom [92]. The bottom level
is a document store; then document hashes are grouped together in higher and higher

24These are arguably proof of stake. It depends whether one’s definition of “proof of stake” means “has
a stake, anywhere” versus “degree of voting power is a function of amount at stake”.
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levels, Merkle tree style; and the top level the Merkle tree root is stored on the Bitcoin
blockchain.

POW then POS. An example is the Ethereum rollout plan. The Ethereum team
realized that if only a few coins were in circulation in a POS model, it would be easy
for a bad actor to dominate by buying all the coins, and that they needed more time to
develop an efficient yet trustworthy POS algorithm. Therefore, Ethereum started with
POW mining to build the network and get coins into wider circulation, and plans to
switch once there are sufficient coins and the POS approach is ready.

X then Centralized then X’. This model is applied when the consensus algorithm
being used gets broken. Voting is temporarily handled by the project’s managing entity
until a fixed version of the algorithm is developed and released. This happened with
Stellar. Stellar started as a federation but the project was split in a fork [86]. Stellar
ran on a single server in early 2015 while a new consensus protocol [44] was developed
and released in April 2015 [93]. The new version is like a federation, but each node
chooses which other nodes to trust for validation [44]. Another example of this model is
Peercoin, one of the first POS variants. After a fork in early 2015, the developer had to
sign transactions until a fix was released [94].

B.3. Engineering Optimizations

This section reviews some of the possible steps to improve the efficiency and throughput
of existing blockchain models.

Shrink Problem Scope. This range of optimizations aims to make the blockchain itself
smaller. One trick to minimize the size of a blockchain is to record only unspent outputs.
This works if the history of transactions is not important, but in many blockchain
applications, from art provenance to supply chain tracking, history is crucial. Another
trick, called Simple Payment Verification (SPV), is to store only block headers rather
than the full block. It allows a node to check if a given transaction is in the block
without actually holding the transactions. Mobile devices typically use Bitcoin SPV
wallets. Cryptonite is an example that combines several of these tricks [95]. These
optimizations makes it easier for nodes to participate in the network, but ultimately
does not solve the core consensus problem.

Different POW hashing algorithm. This kind of optimization seeks to make the
hashing work performed by the network more efficient. Litecoin is one of several models
using scrypt hashing instead of Bitcoin’s SHA256 hashing, requiring about 2/3 less
computational effort than SHA256. This efficiency gain does not improve scalability,
because it still creates a hash power arms race between miners.

Compression. Data on a blockchain has a particular structure, so it is not out of the
question that the right compression algorithm could reduce size by one or more orders
of magnitude. This is a nice trick without much compromise for a simple transaction
ledger. Compression typically hinders the ability to efficiently query a database.
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Better BFT Algorithm. The first solution to the Byzantine Generals problem was
published in 1980 [25], and since that time many proposals have been published at dis-
tributed computing conferences and other venues. Modern examples include Aardvark
[42] and Redundant Byzantine Fault Tolerance (RBFT) [43]. These proposals are cer-
tainly useful, but in on their own do not address the need for Sybil tolerance (attack of
the clones problem).

Multiple Independent Chains. Here, the idea is to have multiple blockchains, with
each chain focusing on a particular set of users or use cases and implementing a model
best suited to those use cases. The countless centralized DBs in active use operate on
this principle right now; each has a specific use case. We should actually expect this
to happen similarly with blockchains, especially privately deployed ones but also for
public ones. It is the blockchain version of the Internet’s Rule 34: “If it exists there is
blockchain of it.”

For public examples, you could use Ethereum if you want decentralized processing,
Primecoin if you want POW to be slightly more helpful to the world, and Dogecoin if
you want much cute, very meme. For private examples, organizations and consortiums
will simply deploy blockchains according to their specific needs, just as they currently
deploy DBs and other compute infrastructure.

A challenge lies in security: if the computational power in a POW blockchain or coin
value in a POS blockchain is too low, they can be overwhelmed by malicious actors.
However, in a federation model, this could be workable, assuming that an individual
blockchain can meet the specific use case’s performance goals, in particular throughput
and latency.

Multiple Independent Chains with Shared Resources for Security. Pegged
sidechains are the most famous example, where mining among chains has the effect of
being merged [83]. SuperNET [96] and Ethereum’s hypercubes and multichain proposals
[97] fit in this category. However, if the goal is simply to get a DB to run at scale, breaking
the DB into many heterogeneous sub-chains adds cognitive and engineering complexity
and introduces risk.

. . .and more. The models described above are just a sampling. There continue to be
innovations (and controversy [98, 74]). For example, a proposed change to the Bitcoin
blockchain called Bitcoin-NG [99] aims to reduce the time to first confirmation while
minimizing all other changes to the Bitcoin blockchain design. The Bitcoin roadmap
[100, 101] contains many other ideas, most notably segregated witness [102].

C. Case Study: DNS as a Decentralized Internet-scale
Database

C.1. Introduction

In the previous section, we reviewed big data” distributed databases (DBs), highlighting
their Internet-level scalability properties and solid foundation in consensus via Paxos.
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We also highlighted the core weakness: centralized control where a trusted third party
is always holding the keys.

We are left with the question: Are there any precedents for distributed DBs going not
only to Internet scale, but in a decentralized and trusted fashion?

There is one DB that not only operates at Internet scale, but also has decentralized
control, and is crucial to the functioning of the Internet as we know it: the Domain
Name System (DNS).

C.2. History of DNS

By the early 1980s, the rapid growth of the Internet made managing numeric domains
a major bookkeeping headache [103]. To address this, in 1983 Jon Postel proposed the
DNS. The DNS was originally implemented as a centralized DB, operated by the U.S.
government. In 1993 the U.S. government handed control to Network Solutions Inc.
(NSI), a private corporation.

NSI faced a dual challenge. It had to make the DNS function effectively, but in a way
that took power away from any single major stakeholder, including the U.S. government
and even NSI itself. David Holtzman, Chief Technology Officer of NSI, architected a
solution: a federation of nodes spread around the globe, where each node’s interests
were as orthogonal as possible to the interests of all the other nodes, in order to prevent
collusion [103]. Holtzman deployed this DB while NSI’s Chief Executive Officer, Jim
Rutt, worked vigorously to hold off the objections of the U.S. Commerce Department
and U.S. Department of Defence, which had hoped to maintain control [104]. In the late
90s, NSI handed off DNS oversight to the Internet Corporation for Assigned Names and
Numbers (ICANN), a new non-governmental, non-national organization [103].

At its core, DNS is simply a mapping from a domain name (e.g. amazon.com) to a
number (e.g. 54.93.255.255). People trust the DNS because no one really controls it;
it’s administered by ICANN.

The DNS was architected to evolve and extend over time. For example, the original
design did not include sufficient security measures, so the DNS Security Extensions
(DNSSEC) were added to bring security while maintaining backwards compatibility
[105].

It is hard to imagine something more Internet scale than the database underpinning
the Internet’s domain name system. The decentralized DNS successfully deployed at
Internet scale, both in terms of technology and governance. ICANN has not always
been popular, but it has lasted and held the Internet together through its explosive
growth, and survived heavy pressure from governments, corporations, and hackers.

Domain names have digital scarcity via a public ledger that requires little extra trust
by the user. There can be only one amazon.com in the DNS model. But DNS is a
consensual arrangement. Anyone could create an alternative registry that could work in
a similar manner, assigning amazon.com to someone else. The alternative registry would
be near useless, however, because there is a critical mass of users that have already voted
on which domain system will be in use, with their network devices by choosing what
name server to use, and with their wallets by purchasing and using domain names within
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the existing DNS system.

C.3. Strengths and Weaknesses

Weaknesses. The DNS does not address the challenge of large scale data storage, or
for the blockchain characteristics of immutability or creation & transfer of assets. But,
it didn’t aim to.

Strengths. The DNS shows that decentralized control, in the form of federations, can
work at Internet scale. It also demonstrates that it is crucial to get the right federation,
with the right rules.

D. Other Experiments

D.1. Experimental Setup

To test the writing performance, we created a process that inserts a block in the database
in an infinite loop.

The block is a valid block with small transactions. In our case, we used valid trans-
actions without any payload. An entire block occupies about 900KB.

1 while True:

2 r.table(table).insert(r.json(BLOCK_SERIALIZED), durability=’soft’).

run(conn)

In hard durability mode, writes are committed to disk before acknowledgments are
sent; in soft mode, writes are acknowledged immediately after being stored in memory.

This means that the insert will block until RethinkDB acknowledges that the data
was cached. In each server we can start multiple processes.

Write Units. Let’s define 1 write unit as being 1 process. For example, in a 32 node
cluster, with each node running 2 processes, we would have 64 write units. This will
make it easier to compare different tests.

Sharding in distributed datastores means partitioning a table so that the data can be
evenly distributed between all nodes in the cluster. In most distributed datastores, there
is a maximum number of shards per table. For RethinkDB, that limit is 32 shards per
table.

In RethinkDB, a shard is also called a primary replica, since by default the replication
factor is 1. Increasing the replication factor produces secondary replicas that are used for
data redundancy. If a node holding a primary replica goes down, another node holding
a secondary replica of the same data can step up and become the primary replica.

Compute Resources. For these tests we are using 32-core AWS EC2 instances with
SSD storage and 10Gbps network connections (c3.8xlarge). For the tests, we used
either 32- or 64-node clusters all running in the same AWS region.
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D.2. Experiments on Throughput

The experimental setup is like the setup described in section D.1.

D.2.1. Experiment 1

Settings:

• Number of nodes: 32

• Number of processes: 2 processes per node

• Write units: 32× 2 = 64 write units

Results:

• Output: stable 1K writes per second

This was the most successful experiment. We were able to reach a stable output of
1K blocks per second. The load on the machines is stable and the IO is at an average
of 50− 60%.

Other tests have shown that increasing the number write units per machine can lead
to a stable performance up to 1.5K writes per second but the load on the nodes would
increase until the node would eventually fail. This means that we are able to handle
bursts for a short amount of time (10− 20 min).

This test can be used has a baseline for the future in where 64 writes equal 1K
transactions per second. Or, that each write unit produces an output of (1000/64) ≈ 64
writes per second.

D.2.2. Experiment 2

Settings:

• Number of nodes: 32

• Number of processes:

– 16 nodes running 2 processes

– 16 nodes running 3 processes

• Write units: 16× 3 + 16× 2 = 80 write units

• Expected output: 1.25K writes per second

Results:

• Output: stable 1.2K writes per second

Increasing a bit the number of write units shows an increase in output close to the
expected value but in this case the IO around 90% close to the limit that the machine
can handle.
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D.2.3. Experiment 3

Settings:

• Number of nodes: 32

• Number of processes:

– 16 nodes running 2 processes

– 16 nodes running 4 processes

• Write units: 16× 4 + 16× 2 = 96 write units

• Expected output: 1.5K writes per second

Results:

• Output: stable 1.4K writes per second

This test produces results similar to previous one. The reason why we don’t quite
reach the expected output may be because RethinkDB needs time to cache results and
at some point increasing the number of write units will not result in an higher output.
Another problem is that as the RethinkDB cache fills (because the RethinkDB is not
able to flush the data to disk fast enough due to IO limitations) the performance will
decrease because the processes will take more time inserting blocks.

D.2.4. Experiment 4

Settings:

• Number of nodes: 64

• Number of processes: 1 process per node

• Write units: 64× 1 = 64 write units

• Expected output: 1K writes per second

Results:

• Output: stable 1K writes per second

In this case, we are increasing the number of nodes in the cluster by 2×. This won’t
have an impact in the write performance because the maximum amount of shards per
table in RethinkDB is 32 (RethinkDB will probably increase this limit in the future).
What this provides is more CPU power (and storage for replicas, more about replication
in the next section). We just halved the amount write units per node maintaining
the same output. The IO in the nodes holding the primary replica is the same has
Experiment D.2.1.
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D.2.5. Experiment 5

Settings:

• Number of nodes: 64

• Number of processes: 2 processes per node

• Write units: 64× 2 = 128 write units

• Expected output: 2000 writes per second

Results:

• Output: unstable 2K (peak) writes per second

In this case, we are doubling the amount of write units. We are able to reach the
expected output, but the output performance is unstable due to the fact that we reached
the IO limit on the machines.

D.2.6. Experiment 6

Settings:

• Number of nodes: 64

• Number of processes:

– 32 nodes running 1 process

– 32 nodes running 2 processes

• Write units: 32× 2 + 32× 1 = 96 write units

• Expected output: 1.5K writes per second

Results:

• Output: stable 1.5K writes per second

This test is similar to Experiment D.2.3. The only difference is that now the write
units are distributed between 64 nodes meaning that each node is writing to its local
cache and we don’t overload the cache of the nodes like we did with Experiment D.2.3.
This is another advantage of adding more nodes beyond 32.

58



D.3. Experiments on Replication

Replication is used for data redundancy. In RethinkDB we are able to specify the number
of shards and replicas per table. Data in secondary replicas is no directly used, it’s just
a mirror of a primary replica and used in case the node holding the primary replica fails.

RethinkDB does a good job trying to distribute data evenly between nodes. We ran
some tests to check this.

By increasing the number of replicas we also increase the number of writes in the
cluster. For a replication factor of 2 we double the amount of writes on the cluster, with
a replication factor of 3 we triple the amount of writes and so on.

With 64 nodes and since we can only have 32 shards we have 32 nodes holding shards
(primary replicas)

With a replication factor of 2, we will have 64 replicas (32 primary replicas and 32
secondary replicas). Since we already have 32 nodes holding the 32 shards/primary
replicas RethinkDB uses the other 32 nodes to hold the secondary replicas. So in a 64
node cluster with 32 shards and a replication factor of 2, 32 nodes will be holding the
primary replicas and the other 32 nodes will be holding the secondary replicas.

If we run Experiment D.2.4 again with this setup, except now with a replication factor
of 2, we get twice the amount of writes. A nice result is that the IO in the nodes holding
the primary replicas does not increase when compared to Experiment D.2.4 because all
of the excess writing is now being done the 32 nodes holding the secondary replicas.

Also regarding replication: if I have a 64 node cluster and create a table with 32
shards, 32 nodes will be holding primary replicas and the other nodes do not hold any
data. If I create another table with 32 shards RethinkDB will create the shards in the
nodes that where not holding any data, evenly distributing the data.
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Tolerance. In Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International Confer-
ence on, pages 297–306. IEEE, 2013. http://www.computer.org/csdl/proceedings/icdcs/2013/
5000/00/5000a297.pdf.

[44] D. Mazieres. The Stellar Consensus Protocol: A Federated Model for Internet-Level Consensus.
https://www.stellar.org/papers/stellar-consensus-protocol.pdf, December 2015. draft of
Nov 17, 2015, retrieved Dec 30, 2015.

[45] Wikipedia. RAID. http://en.wikipedia.org/wiki/RAID.

[46] Bitcoin Wiki. Transaction Fees. https://en.bitcoin.it/wiki/Transaction_fees, 2015.

[47] A. Sethy. The mystery of India’s deadly exam scam. http://www.theguardian.com/world/2015/
dec/17/the-mystery-of-indias-deadly-exam-scam, December 2015.

61

http://the-paper-trail.org/blog/consensus-protocols-paxos/
http://the-paper-trail.org/blog/consensus-protocols-paxos/
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
http://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf
http://en.wikipedia.org/wiki/Paxos_(computer_science)
http://en.wikipedia.org/wiki/Paxos_(computer_science)
https://ramcloud.stanford.edu/raft.pdf
https://ramcloud.stanford.edu/raft.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
http://www.scs.stanford.edu/14au-cs244b/labs/projects/copeland_zhong.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://groups.csail.mit.edu/tds/papers/Lynch/jacm85.pdf
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
http://research.microsoft.com/en-us/um/people/mcastro/publications/thesis.pdf
http://research.microsoft.com/en-us/um/people/mcastro/publications/thesis.pdf
https://www.usenix.org/legacy/event/nsdi09/tech/full_papers/clement/clement.pdf
https://www.usenix.org/legacy/event/nsdi09/tech/full_papers/clement/clement.pdf
http://www.computer.org/csdl/proceedings/icdcs/2013/5000/00/5000a297.pdf
http://www.computer.org/csdl/proceedings/icdcs/2013/5000/00/5000a297.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://en.wikipedia.org/wiki/RAID
https://en.bitcoin.it/wiki/Transaction_fees
http://www.theguardian.com/world/2015/dec/17/the-mystery-of-indias-deadly-exam-scam
http://www.theguardian.com/world/2015/dec/17/the-mystery-of-indias-deadly-exam-scam


[48] WikiData. https://www.wikidata.org.

[49] BigchainDB Documentation. https://docs.bigchaindb.com/en/latest/index.html.

[50] M. Gault. The CIA Secret to Cybersecurity that No One Seems to Get. http://www.wired.com/
2015/12/the-cia-secret-to-cybersecurity-that-no-one-seems-to-get, December 2015.

[51] NoSQL Database. NoSQL: Your Ultimate Guide to the Non-Relational Universe. http://www.

nosql-database.org.

[52] Toad World. Toad for Cloud Databases Community. http://www.toadworld.com/products/

toad-for-cloud-databases/w/wiki/308.survey-distributed-databases, 2015.

[53] The Apache Cassandra Project. https://cassandra.apache.org.

[54] Apache HBase. https://hbase.apache.org.

[55] Redis. https://www.redis.io.

[56] Basho. Riak. https://docs.basho.com/riak.

[57] MongoDB. https://www.mongodb.com.

[58] RethinkDB. https://www.rethinkdb.com.

[59] ElasticSearch. https://www.elastic.co/products/elasticsearch.

[60] Wikipedia. CAP Theorem. https://en.wikipedia.org/wiki/CAP_theorem.

[61] Wikipedia. ACID. https://en.wikipedia.org/wiki/ACID.

[62] RethinkDB Consistency Guarantees. https://rethinkdb.com/docs/consistency/.

[63] RethinkDB Changefeeds. https://rethinkdb.com/docs/changefeeds.

[64] RethinkDB Frequently Asked Questions. https://www.rethinkdb.com/faq/.

[65] GitHub. rethinkdb/rethinkdb. https://github.com/rethinkdb/rethinkdb.

[66] T. Bray. The javascript object notation (json) data interchange format. RFC 7159, RFC Editor,
March 2014. http://www.rfc-editor.org/rfc/rfc7159.txt.

[67] Ed25519: high-speed high-security signatures. https://ed25519.cr.yp.to/.

[68] Simon Josefsson and Ilari Liusvaara. Edwards-curve digital signature algorithm (eddsa).
Internet-Draft draft-irtf-cfrg-eddsa-05, IETF Secretariat, March 2016. http://www.ietf.org/

internet-drafts/draft-irtf-cfrg-eddsa-05.txt.

[69] Thins that use Ed25519. https://ianix.com/pub/ed25519-deployment.html.

[70] Melanie Swan. Blockchain: Blueprint for a New Economy. ” O’Reilly Media, Inc.”, 2015. http:

//shop.oreilly.com/product/0636920037040.do.

[71] M. Andreesen. Why Bitcoin Matters. http://dealbook.nytimes.com/2014/01/21/

why-bitcoin-matters, January 2014. New York Times.

[72] J. Monegro. The Blockchain Application Stack. http://joel.mn/post/103546215249/

the-blockchain-application-stack, November 2014. Joel Monegro Blog.

[73] T. Berners-Lee. Information Management: A Proposal. http://www.w3.org/History/1989/

proposal.html, 1989. World Wide Web Consortium.

[74] N. Popper. A Bitcoin Believer’s Crisis of Faith. http://www.nytimes.com/2016/01/17/business/
dealbook/the-bitcoin-believer-who-gave-up.html?_r=0, January 2016.

[75] Robin Hanson. Information Prizes – Patronizing Basic Research, Finding Consensus. In West-
ern Economics Association meeting, Lake Tahoe, June 2013. http://mason.gmu.edu/~rhanson/

ideafutures.html.

[76] Backfeed. http://backfeed.cc.

[77] Cory Doctorow. Down and Out in the Magic Kingdom. Macmillan, February 2003. http://www.

amazon.com/Down-Magic-Kingdom-Cory-Doctorow/dp/076530953X.

62

https://www.wikidata.org
https://docs.bigchaindb.com/en/latest/index.html
http://www.wired.com/2015/12/the-cia-secret-to-cybersecurity-that-no-one-seems-to-get
http://www.wired.com/2015/12/the-cia-secret-to-cybersecurity-that-no-one-seems-to-get
http://www.nosql-database.org
http://www.nosql-database.org
http://www.toadworld.com/products/toad-for-cloud-databases/w/wiki/308.survey-distributed-databases
http://www.toadworld.com/products/toad-for-cloud-databases/w/wiki/308.survey-distributed-databases
https://cassandra.apache.org
https://hbase.apache.org
https://www.redis.io
https://docs.basho.com/riak
https://www.mongodb.com
https://www.rethinkdb.com
https://www.elastic.co/products/elasticsearch
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/ACID
https://rethinkdb.com/docs/consistency/
https://rethinkdb.com/docs/changefeeds
https://www.rethinkdb.com/faq/
https://github.com/rethinkdb/rethinkdb
http://www.rfc-editor.org/rfc/rfc7159.txt
https://ed25519.cr.yp.to/
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-05.txt
http://www.ietf.org/internet-drafts/draft-irtf-cfrg-eddsa-05.txt
https://ianix.com/pub/ed25519-deployment.html
http://shop.oreilly.com/product/0636920037040.do
http://shop.oreilly.com/product/0636920037040.do
http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters
http://dealbook.nytimes.com/2014/01/21/why-bitcoin-matters
http://joel.mn/post/103546215249/the-blockchain-application-stack
http://joel.mn/post/103546215249/the-blockchain-application-stack
http://www.w3.org/History/1989/proposal.html
http://www.w3.org/History/1989/proposal.html
http://www.nytimes.com/2016/01/17/business/dealbook/the-bitcoin-believer-who-gave-up.html?_r=0
http://www.nytimes.com/2016/01/17/business/dealbook/the-bitcoin-believer-who-gave-up.html?_r=0
http://mason.gmu.edu/~rhanson/ideafutures.html
http://mason.gmu.edu/~rhanson/ideafutures.html
http://backfeed.cc
http://www.amazon.com/Down-Magic-Kingdom-Cory-Doctorow/dp/076530953X
http://www.amazon.com/Down-Magic-Kingdom-Cory-Doctorow/dp/076530953X


[78] D. Suarez. Freedom (TM). http://www.amazon.com/Freedom-TM-Daniel-Suarez/dp/

0525951571, January 2010.

[79] Blockchain.info. Total transaction fees. https://server2.blockchain.info/charts/

transaction-fees, December, 30th 2015.

[80] Tradeblock. Recent Blocks. https://tradeblock.com/bitcoin/.

[81] Ian Grigg. The Ricardian Contract. In Electronic Contracting, 2004. Proceedings. First IEEE
International Workshop on, pages 25–31. IEEE, 2004. http://iang.org/papers/ricardian_

contract.html.

[82] Trent McConaghy. Blockchain, Throughput, and Big Data. http://trent.st/content/

2014-10-28%20mcconaghy%20-%20blockchain%20big%20data.pdf, October 2014. Berlin, Ger-
many.

[83] A. Back. Hashcash - a denial of service counter-measure. Technical report, August 2002. technical
report.

[84] Bitcoin Wiki. Proof of Stake. https://en.bitcoin.it/wiki/Proof_of_Stake, 2015.

[85] Bitsmith. Dan O’Prey talks Hyperledger. http://www.thecoinsman.com/2014/08/

decentralization/dan-oprey-talks-hyperledger/, August 2014.

[86] J. Kim. Safety, liveness and fault tolerance — the consensus choices. https://www.stellar.org/
blog/safety_liveness_and_fault_tolerance_consensus_choice/, December 2014.

[87] J. Kwon. Tendermint: Consensus without Mining. http://tendermint.com/docs/tendermint.

pdf, fall 2014.

[88] Vitalik Buterin. Slasher: A Punitive Proof-of-Stake Algorithm. https://blog.ethereum.org/

2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/, January, 15th 2014.

[89] Vitalik Buterin. Slasher Ghost, and other Developments in Proof of Stake. https://blog.

ethereum.org/2014/10/03/slasher-ghost-developments-proof-stake/, October, 3th 2014.

[90] V. Zamfir. Introducing Casper ‘the Friendly Ghost’. https://blog.ethereum.org/2015/08/01/

introducing-casper-friendly-ghost/, August 2015.

[91] AI Coin. http://www.ai-coin.org.

[92] Factom. http://factom.org/.

[93] J. Kim. Stellar Consensus Protocol: Proof and Code. https://www.stellar.org/blog/

stellar-consensus-protocol-proof-code/, April 2015.

[94] Wikipedia. Peercoin. http://en.wikipedia.org/wiki/Peercoin.

[95] Cryptonite. http://cryptonite.info/.

[96] J.S. Galt. JL777’s vision of the Supernet. https://bitcoinmagazine.com/18167/

what-is-the-supernet-jl777s-vision/, November 2014.

[97] Vitalik Buterin. Scalability, Part 2: Hypercubes. https://blog.ethereum.org/2014/10/21/

scalability-part-2-hypercubes/, October, 21st 2014.

[98] Bitcoin Wiki. Block size limit controversy. https://en.bitcoin.it/wiki/Block_size_limit_

controversy.

[99] Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert van Renesse. Bitcoin-NG: A Scalable
Blockchain Protocol. In NSDI, 2016. http://diyhpl.us/~bryan/papers2/bitcoin/Bitcoin-NG:
%20A%20scalable%20blockchain%20protocol.pdf.

[100] Bitcoin Core. Bitcoin Capacity Increases FAQ. https://bitcoincore.org/en/2015/12/23/

capacity-increases-faq/, December 2015.

[101] G. Maxwell. Capacity increases for the Bitcoin system. https://lists.linuxfoundation.org/

pipermail/bitcoin-dev/2015-December/011865.html, December 2015.

63

http://www.amazon.com/Freedom-TM-Daniel-Suarez/dp/0525951571
http://www.amazon.com/Freedom-TM-Daniel-Suarez/dp/0525951571
https://server2.blockchain.info/charts/transaction-fees
https://server2.blockchain.info/charts/transaction-fees
https://tradeblock.com/bitcoin/
http://iang.org/papers/ricardian_contract.html
http://iang.org/papers/ricardian_contract.html
http://trent.st/content/2014-10-28%20mcconaghy%20-%20blockchain%20big%20data.pdf
http://trent.st/content/2014-10-28%20mcconaghy%20-%20blockchain%20big%20data.pdf
https://en.bitcoin.it/wiki/Proof_of_Stake
http://www.thecoinsman.com/2014/08/decentralization/dan-oprey-talks-hyperledger/
http://www.thecoinsman.com/2014/08/decentralization/dan-oprey-talks-hyperledger/
https://www.stellar.org/blog/safety_liveness_and_fault_tolerance_consensus_choice/
https://www.stellar.org/blog/safety_liveness_and_fault_tolerance_consensus_choice/
http://tendermint.com/docs/tendermint.pdf
http://tendermint.com/docs/tendermint.pdf
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/
https://blog.ethereum.org/2014/10/03/slasher-ghost-developments-proof-stake/
https://blog.ethereum.org/2014/10/03/slasher-ghost-developments-proof-stake/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
http://www.ai-coin.org
http://factom.org/
https://www.stellar.org/blog/stellar-consensus-protocol-proof-code/
https://www.stellar.org/blog/stellar-consensus-protocol-proof-code/
http://en.wikipedia.org/wiki/Peercoin
http://cryptonite.info/
https://bitcoinmagazine.com/18167/what-is-the-supernet-jl777s-vision/
https://bitcoinmagazine.com/18167/what-is-the-supernet-jl777s-vision/
https://blog.ethereum.org/2014/10/21/scalability-part-2-hypercubes/
https://blog.ethereum.org/2014/10/21/scalability-part-2-hypercubes/
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
http://diyhpl.us/~bryan/papers2/bitcoin/Bitcoin-NG:%20A%20scalable%20blockchain%20protocol.pdf
http://diyhpl.us/~bryan/papers2/bitcoin/Bitcoin-NG:%20A%20scalable%20blockchain%20protocol.pdf
https://bitcoincore.org/en/2015/12/23/capacity-increases-faq/
https://bitcoincore.org/en/2015/12/23/capacity-increases-faq/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/011865.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-December/011865.html


[102] P. Wuille. Segregated witness and its impact on scalabil-
ity. http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/

segregated-witness-and-its-impact-on-scalability/.

[103] Berkman Center for Internet and Society. Brief History of the Domain Name System. http:

//cyber.law.harvard.edu/icann/pressingissues2000/briefingbook/dnshistory.html, 2000.
Harvard.

[104] J. Schwartz. Internet ‘Bad Boy’ Takes on a New Challenge. http://www.nytimes.com/2001/04/

23/business/technology-Internet-bad-boy-takes-on-a-new-challenge.html, April 2001.

[105] ICANN. DNSSEC – What Is It and Why Is It Important? https://www.icann.org/resources/

pages/dnssec-qaa-2014-01-29-en, January 2014.

64

http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-witness-and-its-impact-on-scalability/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/hong-kong/segregated-witness-and-its-impact-on-scalability/
http://cyber.law.harvard.edu/icann/pressingissues2000/briefingbook/dnshistory.html
http://cyber.law.harvard.edu/icann/pressingissues2000/briefingbook/dnshistory.html
http://www.nytimes.com/2001/04/23/business/technology-Internet-bad-boy-takes-on-a-new-challenge.html
http://www.nytimes.com/2001/04/23/business/technology-Internet-bad-boy-takes-on-a-new-challenge.html
https://www.icann.org/resources/pages/dnssec-qaa-2014-01-29-en
https://www.icann.org/resources/pages/dnssec-qaa-2014-01-29-en


Addendum to the BigchainDB Whitepaper

BigchainDB GmbH, Berlin, Germany

May 23, 2017

This addendum summarizes significant changes since the BigchainDB white-
paper was last updated. The online BigchainDB Documentation is kept up-to-
date.

• There are more details about how BigchainDB achieves decentralization
and immutability / tamper-resistance in the BigchainDB Documentation.

• Sections 4 and 6. The whitepaper described S and C as being two sepa-
rate databases, but the actual implementation has them as three separate
tables (in one database). S became the backlog table (of transactions).
C became two append-only tables, one for blocks and one for votes. To
understand why, see the discussion on Issue #368 and related issues on
GitHub.

• Section 4.3, Section 6 and Figure 10. Transactions are not validated
before being written to the backlog table (S in the whitepaper).

• Section 4.5. The data structures of transactions, blocks and votes have
changed and will probably change some more. Their current schemas can
be found in the BigchainDB Documentation. Each node makes one vote
for each block. Each vote contains the id (hash) of the block being voted
on, and the id (hash) of the previous block as determined by the voting
node. Another node might consider a different block to be the previous
block. In principle, each node records a different order of blocks (in its
votes). This is okay because the check to see if a transaction is a double-
spending attempt doesn’t depend on an agreed-upon block ordering.

• (This isn’t a change; it’s more of an interesting realization.) If you pick a
random block, its hash is stored in some votes, but the information in those
votes never gets included in anything else (blocks or votes). Therefore
there is no hash chain or Merkle chain of blocks. Interestingly, every
CREATE transaction begins a Merkle directed acyclic graph (DAG) of
transactions, because all TRANSFER transactions contain the hashes of
previous transactions.

• Section 5.1 By January 2017, one will be able to choose RethinkDB
or MongoDB as the backend database. Both will be supported. In the
future, even more databases may be supported. MongoDB was chosen
as the second one to support because it’s very similar to RethinkDB: it’s
document-oriented, has strong consistency guarantees, and has the same
open source license (AGPL v3). Also, it’s possible to get something like
RethinkDB’s changefeed with MongoDB.

https://docs.bigchaindb.com/
https://docs.bigchaindb.com/en/latest/decentralized.html
https://docs.bigchaindb.com/en/latest/immutable.html
https://github.com/bigchaindb/bigchaindb/issues/368
https://docs.bigchaindb.com/projects/server/en/latest/index.html


• Section 5.2. A BigchainDB node can have arbitrarily-large storage ca-
pacity (e.g. in a RAID array). Other factors limit the maximum storage
capacity of a cluster (e.g. available RAM in the case of RethinkDB).

• Section 5.4 There have been some changes in the details of how crypto-
graphic hashes and signatures are calculated. For the latest details, see
the documentation page about cryptographic calculations.

https://bigchaindb.readthedocs.io/en/latest/nodes/node-requirements.html#memory-ram-requirements
https://docs.bigchaindb.com/projects/server/en/master/appendices/cryptography.html
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